Abstract

We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m2 and a figure of merit of 2.0 W-1/2 at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO2 protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators

Yasufumi Enami, Youssef Jouane, Jingdong Luo, and Alex K-Y. Jen
Opt. Express 22(24) 30191-30199 (2014)

A high speed electro-optic phase shifter based on a polymer-infiltrated P-S-N diode capacitor

Maoqing Xin, Ching Eng Png, Soon Thor Lim, Vivek Dixit, and Aaron J. Danner
Opt. Express 19(15) 14354-14369 (2011)

Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators

Y. Jouane, Y-C. Chang, D. Zhang, J. Luo, A. K-Y. Jen, and Y. Enami
Opt. Express 22(22) 27725-27732 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
    [Crossref]
  3. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
    [Crossref] [PubMed]
  4. T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
    [Crossref]
  5. F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
    [Crossref]
  6. Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
    [Crossref]
  7. G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics (ACS Symposium Series 601, 1995).
  8. W. N. Herman, S. R. Flom, and S. H. Foulger, eds., Organic Thin Films for Photonic Applications (ACS Symposium Series 1039, 2010).
  9. X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
    [Crossref]
  10. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
    [Crossref]
  11. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [Crossref] [PubMed]
  12. S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
    [Crossref]
  13. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
    [Crossref]
  14. H. Huang, S. R. Nuccio, Y. Yue, J. Yang, Y. Ren, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband Modulation Performance of 100-GHz EO Polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).
    [Crossref]
  15. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
    [Crossref] [PubMed]
  16. B. Li, J. Vemagiri, and R. Dinu, “Design and Modeling of Traveling-Wave Electro-Optic Polymer Modulator for Ultrahigh Speed Applications,” J. Lightwave Technol. 27(5), 606–611 (2009).
    [Crossref]
  17. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
    [Crossref]
  18. O. D. Herrera, K.-J. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Silica/Electro-Optic Polymer Optical Modulator with Integrated Antenna for Microwave Receiving,” J. Lightwave Technol. 32(20), 3861–3867 (2014).
    [Crossref]
  19. D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
    [Crossref]
  20. R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
    [Crossref]
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  22. C. A. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005)
  23. EOSPACE® Inc. website. http://www.eospace.com/phase_modulator.htm
  24. T. Hirano, K. Okada, J. Hirokawa, and M. Ando, “60 GHz On-Chip Patch Antenna Integrated in a 0.18-μm CMOS Technology,” in Proceedings of IEEE International Symposium on Antennas & Propagation (IEEE, 2012), pp. 62–65.
  25. J. Luo and A. K.-Y. Jen, “Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401012 (2013).
    [Crossref]
  26. Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
    [Crossref]
  27. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  28. R. W. Ridgway, J. A. Conway, and C. L. Dohrman, “Microwave Photonics: Recent Programs at DARPA,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 286–289.
    [Crossref]
  29. G.-K. Chang and C. Liu, “1-100GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications,” in 2013 International Topical Meeting on Microwave Photonics (IEEE MWP, 2013), pp. 5–8.
    [Crossref]

2014 (2)

2013 (5)

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

J. Luo and A. K.-Y. Jen, “Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401012 (2013).
[Crossref]

2012 (3)

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

H. Huang, S. R. Nuccio, Y. Yue, J. Yang, Y. Ren, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband Modulation Performance of 100-GHz EO Polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).
[Crossref]

2011 (3)

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
[Crossref] [PubMed]

2010 (1)

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

2009 (1)

2007 (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

2004 (1)

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

1993 (1)

F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
[Crossref]

Almeida, V. R.

Barrios, C. A.

Bortnik, B.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Bridges, W. B.

F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chakravarty, S.

Chang-Hasnain, C. J.

Chen, R. T.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Clark, T. R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Cox, C. H.

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Demir, V.

Dillon, T. E.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

Dinu, R.

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Fetterman, H. R.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Haas, B. M.

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Herman, W. N.

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

Herrera, O. D.

Himmelhuber, R.

Hosseini, A.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Huang, H.

Hung, Y.-C.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Inoue, S.

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Jen, A.

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

Jen, A. K.-Y.

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Kim, K.-J.

Lee, B.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Leng, Y.

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

Li, B.

Li, L.

Lin, C.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

Lipson, M.

Luo, J.

O. D. Herrera, K.-J. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Silica/Electro-Optic Polymer Optical Modulator with Integrated Antenna for Microwave Receiving,” J. Lightwave Technol. 32(20), 3861–3867 (2014).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

J. Luo and A. K.-Y. Jen, “Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401012 (2013).
[Crossref]

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Mackrides, D. G.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

Martin, R. D.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Murata, H.

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
[Crossref]

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
[Crossref]

Murphy, T. E.

Nelson, R. L.

Norwood, R. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nuccio, S. R.

Okamura, Y.

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
[Crossref]

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
[Crossref]

Otomo, A.

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Pagán, V. R.

Parekh, D.

Park, D.

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

Peyghambarian, N.

Prather, D. W.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

Ren, Y.

Schaffner, J. H.

F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
[Crossref]

Schuetz, C. A.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

Seo, B.-J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Sheehy, F. T.

F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
[Crossref]

Shi, S.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

Song, H. C.

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Song, R.

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Steier, W. H.

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Subbaraman, H.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

Tazawa, H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Vemagiri, J.

Voorakaranam, R.

Wang, A. X.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Wang, S.

Waterhouse, R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Wei, C.

Wijayanto, Y. N.

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
[Crossref]

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
[Crossref]

Willner, A. E.

Xu, Q.

Yang, J.

Yu, G.

Yue, Y.

Zhan, Q.

Zhang, X.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Electron. Lett. (1)

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap,” Electron. Lett. 48(1), 36–38 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “Analysis and Demonstration of Mach–Zehnder Polymer Modulators Using In-Plane Coplanar Waveguide Structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

J. Luo and A. K.-Y. Jen, “Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401012 (2013).
[Crossref]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic Polymer Ring Resonator Modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13(1), 104–110 (2007).
[Crossref]

Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400709 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
[Crossref]

IEEE Microw. Mag. (1)

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

IEEE Photon. J. (1)

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. T. Sheehy, W. B. Bridges, and J. H. Schaffner, “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photon. Technol. Lett. 5(3), 307–310 (1993).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[Crossref]

D. Park, Y. Leng, J. Luo, A. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Proc. SPIE 7936, 793607 (2011).
[Crossref]

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband Modulation of Light by Using an Electro-Optic Polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Other (8)

G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics (ACS Symposium Series 601, 1995).

W. N. Herman, S. R. Flom, and S. H. Foulger, eds., Organic Thin Films for Photonic Applications (ACS Symposium Series 1039, 2010).

R. W. Ridgway, J. A. Conway, and C. L. Dohrman, “Microwave Photonics: Recent Programs at DARPA,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 286–289.
[Crossref]

G.-K. Chang and C. Liu, “1-100GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications,” in 2013 International Topical Meeting on Microwave Photonics (IEEE MWP, 2013), pp. 5–8.
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

C. A. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005)

EOSPACE® Inc. website. http://www.eospace.com/phase_modulator.htm

T. Hirano, K. Okada, J. Hirokawa, and M. Ando, “60 GHz On-Chip Patch Antenna Integrated in a 0.18-μm CMOS Technology,” in Proceedings of IEEE International Symposium on Antennas & Propagation (IEEE, 2012), pp. 62–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Not to scale) (a) Top view of the device; the patch antenna structure with a 4 element array (N = 4) is in-plane with an optical waveguide with under the NOA61 top cladding layer. (b) Side view of the device along the center cut-line shown in (a) showing incident RF plane waves. The layer in black is a SiO2 protection layer on an intrinsic GaAs substrate to block leakage current through the substrate. (c) Cross section of the device along the vertical cut-line shown in (a) with the simulated fundamental optical mode profile shown in the center. The Ti/Au slotted patch is about 1-1.2 μm thick and the bottom of the substrate is coated with 1-2 μm thick Ti/Au for ground plane of the antenna.

Fig. 2
Fig. 2

HFSS® Simulation of the magnitude of the electric field in the slot area at normal RF incident wave. The electric field for the RF plane wave is 1 V/m. The highest electric field is 480 V/m in the center of the slot, indicating the enhancement factor is about 480.

Fig. 3
Fig. 3

(a) Schematic of experimental setup. Polarization-maintained attenuator is used to control input power. (b) (Without SiO2 protection layer) Optical spectra at 36 GHz of the array device. Blue and green lines represent z- and x-polarized RF wave from the horn antenna, respectively.

Fig. 4
Fig. 4

(Without SiO2 protection layer) (a) Optical spectra for the single patch antenna at incident angles of −30°, −15°, 0°, 15°, and 30°. (b) CSR as a function of RF incident angle. Red dots are experimental data and the blue line is calculated data based on Eqs. (8) and (15). Note that smaller CSR means higher optical modulation based on Eq. (15).

Fig. 5
Fig. 5

(With SiO2 protection layer) (a) Optical spectrum for the array patch antenna at normal incidence showing the best CSR of 22 dB. (b) CSR as a function of RF incident angle. Red dots are experimental data and blue line is calculated data based on Eqs. (11) and (15). The data taken in this experiment was limited by the rotation arm in the setup.

Fig. 6
Fig. 6

(a) Optical spectrum as a function of optical wavelength and RF frequency. (b) Simulated enhancement factor as a function of RF frequency in case of lossless and lossy substrate using HFSS®.

Fig. 7
Fig. 7

(a) Schematic showing deconvolution process. “/” means deconvolution. (b) Optical spectrum as a function of optical wavelength and RF frequency when 36 GHz RF carrier and 3 GHz modulation are fed to the horn antenna. (c) Optical spectrum (blue) when RF carrier signal is modulated with 3 GHz sinusoidal signal. The experimental result is fitted to a combination of 7 Gaussian functions (red), which is then deconvolved with the optical spectrum of laser from OSA (transfer function) in order to recover optical carrier, RF carrier, and modulation signal.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

n(x,t)= n 0 +δn(x,t), δn(x,t)= 1 2 n 0 3 r 33 Γ E slot ( x,t ),
E RF = E RF 0 sin( k RF sinθx ω RF t ),
E RF inside = t RF E RF = 2cosθ cosθ+ ε RF cos θ E RF 0 sin( k RF ε RF sin θ x ω RF t ),
E slot 0 =2 t RF E RF 0 W eff d slot ,
d[ δϕ(x,t) ]= k op δn( x,t )dx,
v op = c n(x,t) = c n 0 1 1 A n 0 sin( k RF sinθx ω RF t ) c n 0 ,
δϕ( t 0 )= k op 0 L δn( x, t (x) )dx = k op A 0 L sin( k RF ( sinθ n 0 )x ω RF t 0 )dx .
δϕ( t 0 )= k op ALsinc( k RF u L 2 )sin( ω RF t 0 k RF u L 2 ),
δϕ( t 0 )= k op ALsinc( k RF n 0 L 2 )sin( ω RF t 0 + k RF n 0 L 2 ).
δ ϕ N ( t 0 )= k op A s=0 N1 s L A s L A +L sin( k RF ux ω RF t 0 )dx ,
δ ϕ N ( t 0 )= k op ALsinc( k RF uL 2 ) B N sin{ ω RF t 0 k RF u[ L+(N1) L A ] 2 },
E= E op e j[ ω op t+msin( ω RF t ) ] ,
E= E op e j ω op t [ J 0 (m)+ s=1 J s (m) e js ω RF t + s=1 (1) s J s (m) e js ω RF t ],
CSR = [ J 0 (m) J 1 (m) ] 2 = [ 20log J 0 (m) J 1 (m) ] dB .
CSR 4 m 2 = [ 20log 2 m ] dB .
CSR [dB]20log[ 2 k op ALsinc( k RF uL 2 ) B N ],
m= π V r V π = π 2 Z m P D A e V π .
m=π( 2 Z m G r V π )( P D λ 2 4π ).
FOM[ W 1/2 ]= 2 Z m G r V π = m π P D λ 2 4π .
δ ϕ N ( t 0 )= ω op ω RF A u s=0 N1 { cos[ k RF u( s L A +L ) ω RF t 0 ]cos( k RF us L A ω RF t 0 ) } .
δ ϕ N ( t 0 )=2 ω op ω RF A u sin( ω RF u 2c L ) s=0 N1 sin[ ω RF ( t 0 s u c L A u 2c L ) ] ,
s=0 N1 sin(ysb) = sin( Nb 2 ) sin( b 2 ) sin[ y( N1 ) b 2 ],
δ ϕ N ( t 0 )=2 ω op ω RF A u sin( ω RF u 2c L ) B N sin( y( N1 ) b 2 ),
B N = sin( Nb 2 ) / sin( b 2 ) .

Metrics