Abstract

A magnetic field and electric current meter is proposed based on a differential twin receiving microfiber coupler (MC) sensor. The sensor is fabricated by bonding a MC and an aluminium (Al) wire together. With the small diameter of several micrometers, the output power at each port of the coupler shows high sensitivity to the distortion of Al wire from the Lorentz force induced by the magnetic field or the thermal expansion caused by the electric current. The ratio of the difference to the sum of the output signals from the two output ports can be used to eliminate the variation in the sensitivity. Using our proposed sensor, we measured a magnetic field sensitivity of ~0.0496 mT−1, current sensitivity of ~1.0899 A−1 without any magnetic field, and good repeatability are also shown in this paper.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ampere force based magnetic field sensor using dual-polarization fiber laser

Linghao Cheng, Zhenzhen Guo, Jianlei Han, Long Jin, and Bai-Ou Guan
Opt. Express 21(11) 13419-13424 (2013)

Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid

Ming Deng, Xiaokang Sun, Meng Han, and Decai Li
Appl. Opt. 52(4) 734-741 (2013)

Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid

Longfeng Luo, Shengli Pu, Jiali Tang, Xianglong Zeng, and Mahieddine Lahoubi
Opt. Express 23(14) 18133-18142 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
    [Crossref] [PubMed]
  3. K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
    [Crossref]
  4. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [Crossref] [PubMed]
  5. J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
    [Crossref]
  6. Y. Miao, J. Wu, W. Lin, K. Zhang, Y. Yuan, B. Song, H. Zhang, B. Liu, and J. Yao, “Magnetic field tunability of optical microfiber taper integrated with ferrofluid,” Opt. Express 21(24), 29914–29920 (2013).
    [Crossref] [PubMed]
  7. S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Optical Fiber Communication Conference,1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. (San Diego, CA, USA, 1999), pp. 135–137.
  8. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  9. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  10. L. Cheng, Z. Guo, J. Han, L. Jin, and B.-O. Guan, “Ampere force based magnetic field sensor using dual-polarization fiber laser,” Opt. Express 21(11), 13419–13424 (2013).
    [PubMed]
  11. S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
    [Crossref]
  12. M. Belal, Z. Q. Song, Y. Jung, G. Brambilla, and T. Newson, “An interferometric current sensor based on optical fiber micro wires,” Opt. Express 18(19), 19951–19956 (2010).
    [Crossref] [PubMed]
  13. G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced Faraday rotation in an microcoil current sensor,” IEEE Photon. Technol. Lett. 24, 860–862 (2012).
  14. X. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett. 37(24), 5187–5189 (2012).
    [Crossref] [PubMed]
  15. M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
    [Crossref] [PubMed]
  16. Y. Jung, R. Chen, R. Ismaeel, G. Brambilla, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21(20), 24326–24331 (2013).
    [Crossref] [PubMed]
  17. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  18. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  19. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
    [Crossref]
  20. J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21(12), 519–521 (1985).
    [Crossref]

2014 (3)

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

2011 (1)

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

2010 (3)

2009 (1)

2004 (1)

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

1985 (2)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21(12), 519–521 (1985).
[Crossref]

Ahmad, H.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Alam, S.-U.

Belal, M.

Brambilla, G.

Chen, G. Y.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced Faraday rotation in an microcoil current sensor,” IEEE Photon. Technol. Lett. 24, 860–862 (2012).

Chen, R.

Cheng, L.

Dai, J.

Damanhuri, S. S. A.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Ding, H.

Ding, M.

Dong, S.

Finazzi, V.

Giles, I. P.

Guan, B.-O.

Guo, Z.

Hall, M.

J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21(12), 519–521 (1985).
[Crossref]

Han, J.

Harun, S. W.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Huang, J.

Hussey, C. D.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

Ismaeel, R.

Jasim, A. A.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Jiang, D.

Jiang, S.

Jin, L.

Jung, Y.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lee, T.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced Faraday rotation in an microcoil current sensor,” IEEE Photon. Technol. Lett. 24, 860–862 (2012).

Li, J.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Li, X.

Lim, K. S.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Lin, W.

Liu, B.

Liu, Q.

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

Love, J. D.

J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21(12), 519–521 (1985).
[Crossref]

Lu, Y.-

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

Marciante, J. R.

Miao, Y.

Newson, T.

Newson, T. P.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced Faraday rotation in an microcoil current sensor,” IEEE Photon. Technol. Lett. 24, 860–862 (2012).

M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
[Crossref] [PubMed]

Oduro, B.

Payne, F. P.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

Pu, S.

Qiu, S.-

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

Richardson, D.

Richardson, D. J.

Song, B.

Song, Z.

Song, Z. Q.

Sun, L.

Tio, C. K.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

Wang, H.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
[Crossref] [PubMed]

Wang, J.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Wang, N.

Wang, P.

Wang, R.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Wu, J.

Xu, F.

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

Xu, Z.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Yang, M.

Yao, J.

Yataki, M. S.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

Yuan, Y.

Zhang, B.

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Zhang, H.

Zhang, K.

Zhou, C.

Electron. Lett. (2)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21(12), 519–521 (1985).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced Faraday rotation in an microcoil current sensor,” IEEE Photon. Technol. Lett. 24, 860–862 (2012).

Opt. Express (9)

Y. Miao, J. Wu, W. Lin, K. Zhang, Y. Yuan, B. Song, H. Zhang, B. Liu, and J. Yao, “Magnetic field tunability of optical microfiber taper integrated with ferrofluid,” Opt. Express 21(24), 29914–29920 (2013).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[Crossref] [PubMed]

Y. Jung, R. Chen, R. Ismaeel, G. Brambilla, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21(20), 24326–24331 (2013).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[Crossref] [PubMed]

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

L. Cheng, Z. Guo, J. Han, L. Jin, and B.-O. Guan, “Ampere force based magnetic field sensor using dual-polarization fiber laser,” Opt. Express 21(11), 13419–13424 (2013).
[PubMed]

M. Belal, Z. Q. Song, Y. Jung, G. Brambilla, and T. Newson, “An interferometric current sensor based on optical fiber micro wires,” Opt. Express 18(19), 19951–19956 (2010).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

J. Li, R. Wang, J. Wang, B. Zhang, Z. Xu, and H. Wang, “Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers,” Opt. Fiber Technol. 20(2), 100–105 (2014).
[Crossref]

Opt. Lett. (3)

Sens. Actuat. A Phys. (2)

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuat. A Phys. 167(1), 60–62 (2011).
[Crossref]

S.- Qiu, Q. Liu, F. Xu, and Y.- Lu, “Ampere force based photonic crystal fiber magnetic field sensor,” Sens. Actuat. A Phys. 210, 95–98 (2014).
[Crossref]

Other (1)

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Optical Fiber Communication Conference,1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. (San Diego, CA, USA, 1999), pp. 135–137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of the differential twin receiving fiber-optic magnetic field and electric current sensor. The electric current flows through the Al wire, and the applied magnetic field is perpendicular to the current. The inset shows the schematic diagram of the MC.
Fig. 2
Fig. 2 The calculated longitudinal force sensitivity with different microfiber diameter.
Fig. 3
Fig. 3 Microscope images of (a) the transition region and (b) the waist region of the MC, the diameter of each coupled microfiber is 2.45 μm; (c) The output spectrum of the sensor without any magnetic field and electric current. The inset shows the output spectra from Port 3 of the sensor with 80 mA electric current and 0 mT or 10 mT magnetic fields.
Fig. 4
Fig. 4 Γ dependence on magnetic field in the wavelength of 1543 nm under 80 mA electric current in ascending and descending directions. The curve represents the linear fitting of the data.
Fig. 5
Fig. 5 Γ dependence on electric current in the wavelength of 1543 nm under no perpendicular magnetic field in ascending and descending directions. The curve represents the linear fitting of the data.
Fig. 6
Fig. 6 Γ dependence on electric current in the wavelength of 1543 nm under 2 mT perpendicular magnetic fields in ascending and descending directions. The curve represents the linear fitting of the data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P 3 = 1 2 I 0 { 1+cos[ ( C ˜ x + C ˜ y )L ]cos[ ( C ˜ x C ˜ y )L ] },
P 4 = 1 2 I 0 { 1cos[ ( C ˜ x + C ˜ y )L ]cos[ ( C ˜ x C ˜ y )L ] }.
P 3 P 4 P 3 + P 4 =cos[ ( C ˜ x + C ˜ y )L ]cos[ ( C ˜ x C ˜ y )L ].
Γ= P 3 P 4 P 3 + P 4 .
F Lorentz =BI L Lorentz .
ΔL L = f EA .
Δ n 1 n 1 = f EA P.
S B = Γ B , S I = Γ I .

Metrics