Abstract

We analyze the performance of a VBG equipped diode of narrow linewidth in a side-pumped double-beam, mode-controlled resonator and demonstrate power scaling without loss of beam quality by a factor of three, when compared to previous results. 69 W of diffraction-limited laser output power at 1053 nm in a Nd:YLF lasers are demonstrated with slope efficiency of 65% and record optical-to-optical efficiency of 60%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser

Xiaoyuan Peng, Lei Xu, and Anand Asundi
Appl. Opt. 44(5) 800-807 (2005)

Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling

Niklaus Ursus Wetter, Eduardo Colombo Sousa, Izilda Marcia Ranieri, and Sonia Lícia Baldochi
Opt. Lett. 34(3) 292-294 (2009)

High-power diode-bar end-pumped Nd:YLF laser at 1.053??µm

W. A. Clarkson, P. J. Hardman, and D. C. Hanna
Opt. Lett. 23(17) 1363-1365 (1998)

References

  • View by:
  • |
  • |
  • |

  1. E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16(15), 11115–11123 (2008).
    [Crossref] [PubMed]
  2. Y. Hirano, T. Yanagisawa, S. Ueno, T. Tajime, O. Uchino, T. Nagai, and C. Nagasawa, “All-solid-state high-power conduction-cooled Nd:YLF rod laser,” Opt. Lett. 25(16), 1168–1170 (2000).
    [Crossref] [PubMed]
  3. G. Aka, L. Zheng, A. Ikesue, Y. Aung, and P. Loiseau, “CW intracavity frequency doubled Nd:YAG core ceramics composite at 473 nm,” in Proceedings of Conference on Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2014), paper AM4A.3.
  4. R. S. Pinto and N. U. Wetter, “Highly efficient, dynamically stable Nd:YAG single-rod resonators with 60% TEM00 extraction efficiency and high misalignment stability,” Laser Phys. 24(8), 085801 (2014).
    [Crossref]
  5. A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
    [Crossref]
  6. N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
    [Crossref]
  7. N. U. Wetter and A. M. Deana, “Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality,” Laser Phys. Lett. 10(3), 035807 (2013).
    [Crossref]
  8. N. U. Wetter and A. M. Deana, “Power scaling of a side-pumped Nd:YLF laser based on DBMC technology,” Appl. Phys. B. 117(3), 855–860 (2014).
    [Crossref]
  9. A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
    [Crossref]
  10. M. Deana and N. U. Wetter, “High-efficiency, Q-switched and diffraction-limited Nd:YLF side-pumped laser,” Proc. SPIE 8433, 84330B (2012).
    [Crossref]
  11. A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
    [Crossref]
  12. A. M. Deana, M. A. P. A. Lopez, and N. U. Wetter, “Diode-side-pumped Nd:YLF laser emitting at 1313 nm based on DBMC technology,” Opt. Lett. 38(20), 4088–4091 (2013).
    [Crossref] [PubMed]
  13. N. U. Wetter, E. C. Sousa, I. M. Ranieri, and S. L. Baldochi, “Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling,” Opt. Lett. 34(3), 292–294 (2009).
    [Crossref] [PubMed]
  14. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29(16), 1891–1893 (2004).
    [Crossref] [PubMed]
  15. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
    [Crossref]
  16. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
    [Crossref] [PubMed]
  17. K. Kubodera and K. Otsuka, “Single‐transverse‐mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50(2), 653–659 (1979).
    [Crossref]
  18. Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
    [Crossref]
  19. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]

2014 (2)

R. S. Pinto and N. U. Wetter, “Highly efficient, dynamically stable Nd:YAG single-rod resonators with 60% TEM00 extraction efficiency and high misalignment stability,” Laser Phys. 24(8), 085801 (2014).
[Crossref]

N. U. Wetter and A. M. Deana, “Power scaling of a side-pumped Nd:YLF laser based on DBMC technology,” Appl. Phys. B. 117(3), 855–860 (2014).
[Crossref]

2013 (2)

N. U. Wetter and A. M. Deana, “Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality,” Laser Phys. Lett. 10(3), 035807 (2013).
[Crossref]

A. M. Deana, M. A. P. A. Lopez, and N. U. Wetter, “Diode-side-pumped Nd:YLF laser emitting at 1313 nm based on DBMC technology,” Opt. Lett. 38(20), 4088–4091 (2013).
[Crossref] [PubMed]

2012 (3)

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

M. Deana and N. U. Wetter, “High-efficiency, Q-switched and diffraction-limited Nd:YLF side-pumped laser,” Proc. SPIE 8433, 84330B (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

2010 (1)

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

2009 (1)

2008 (2)

E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16(15), 11115–11123 (2008).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

2006 (2)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

2000 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1979 (1)

K. Kubodera and K. Otsuka, “Single‐transverse‐mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50(2), 653–659 (1979).
[Crossref]

Baldochi, S. L.

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

N. U. Wetter, E. C. Sousa, I. M. Ranieri, and S. L. Baldochi, “Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling,” Opt. Lett. 34(3), 292–294 (2009).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Ban, V. S.

Beach, R. J.

Bernhardi, E. H.

Bollig, C.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Camargo, F. A.

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Damzen, M. J.

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Deana, A. M.

N. U. Wetter and A. M. Deana, “Power scaling of a side-pumped Nd:YLF laser based on DBMC technology,” Appl. Phys. B. 117(3), 855–860 (2014).
[Crossref]

N. U. Wetter and A. M. Deana, “Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality,” Laser Phys. Lett. 10(3), 035807 (2013).
[Crossref]

A. M. Deana, M. A. P. A. Lopez, and N. U. Wetter, “Diode-side-pumped Nd:YLF laser emitting at 1313 nm based on DBMC technology,” Opt. Lett. 38(20), 4088–4091 (2013).
[Crossref] [PubMed]

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

Deana, M.

M. Deana and N. U. Wetter, “High-efficiency, Q-switched and diffraction-limited Nd:YLF side-pumped laser,” Proc. SPIE 8433, 84330B (2012).
[Crossref]

Dolgy, S. V.

Downs, E.

Esser, M. J. D.

Forbes, A.

Fukuoka, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Hirano, Y.

Hiruma, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kan, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Krupke, W. F.

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
[Crossref] [PubMed]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kubodera, K.

K. Kubodera and K. Otsuka, “Single‐transverse‐mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50(2), 653–659 (1979).
[Crossref]

Kubomura, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Lopez, M. A. P. A.

Lü, Y.-F.

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Matsuoka, S.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Melnik, E. D.

Minassian, A.

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Miyajima, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Nagai, T.

Nagasawa, C.

Niigaki, M.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Otsuka, K.

K. Kubodera and K. Otsuka, “Single‐transverse‐mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50(2), 653–659 (1979).
[Crossref]

Page, R. H.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pinto, R. S.

R. S. Pinto and N. U. Wetter, “Highly efficient, dynamically stable Nd:YAG single-rod resonators with 60% TEM00 extraction efficiency and high misalignment stability,” Laser Phys. 24(8), 085801 (2014).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ranieri, I. M.

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

N. U. Wetter, E. C. Sousa, I. M. Ranieri, and S. L. Baldochi, “Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling,” Opt. Lett. 34(3), 292–294 (2009).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Shaw, J.

Sousa, E. C.

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

N. U. Wetter, E. C. Sousa, I. M. Ranieri, and S. L. Baldochi, “Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling,” Opt. Lett. 34(3), 292–294 (2009).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Tajime, T.

Thompson, B.

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Uchino, O.

Ueno, S.

Volodin, B. L.

Wang, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Wetter, N. U.

R. S. Pinto and N. U. Wetter, “Highly efficient, dynamically stable Nd:YAG single-rod resonators with 60% TEM00 extraction efficiency and high misalignment stability,” Laser Phys. 24(8), 085801 (2014).
[Crossref]

N. U. Wetter and A. M. Deana, “Power scaling of a side-pumped Nd:YLF laser based on DBMC technology,” Appl. Phys. B. 117(3), 855–860 (2014).
[Crossref]

N. U. Wetter and A. M. Deana, “Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality,” Laser Phys. Lett. 10(3), 035807 (2013).
[Crossref]

A. M. Deana, M. A. P. A. Lopez, and N. U. Wetter, “Diode-side-pumped Nd:YLF laser emitting at 1313 nm based on DBMC technology,” Opt. Lett. 38(20), 4088–4091 (2013).
[Crossref] [PubMed]

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

M. Deana and N. U. Wetter, “High-efficiency, Q-switched and diffraction-limited Nd:YLF side-pumped laser,” Proc. SPIE 8433, 84330B (2012).
[Crossref]

N. U. Wetter, E. C. Sousa, I. M. Ranieri, and S. L. Baldochi, “Compact, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling,” Opt. Lett. 34(3), 292–294 (2009).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Xia, J.

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Yanagisawa, T.

Yin, X.-D.

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Zhang, A.-F.

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Zhang, X.-H.

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Zheng, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Appl. Phys. B (2)

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

A. M. Deana, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality,” Appl. Phys. B 106(4), 877–880 (2012).
[Crossref]

Appl. Phys. B. (1)

N. U. Wetter and A. M. Deana, “Power scaling of a side-pumped Nd:YLF laser based on DBMC technology,” Appl. Phys. B. 117(3), 855–860 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Appl. Phys. (1)

K. Kubodera and K. Otsuka, “Single‐transverse‐mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50(2), 653–659 (1979).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

N. U. Wetter, E. C. Sousa, F. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A, Pure Appl. Opt. 10(10), 104013 (2008).
[Crossref]

Laser Phys. (1)

R. S. Pinto and N. U. Wetter, “Highly efficient, dynamically stable Nd:YAG single-rod resonators with 60% TEM00 extraction efficiency and high misalignment stability,” Laser Phys. 24(8), 085801 (2014).
[Crossref]

Laser Phys. Lett. (1)

N. U. Wetter and A. M. Deana, “Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality,” Laser Phys. Lett. 10(3), 035807 (2013).
[Crossref]

Opt. Commun. (1)

Y.-F. Lü, X.-H. Zhang, A.-F. Zhang, X.-D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun. 283(9), 1877–1879 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (2)

M. Deana and N. U. Wetter, “High-efficiency, Q-switched and diffraction-limited Nd:YLF side-pumped laser,” Proc. SPIE 8433, 84330B (2012).
[Crossref]

A. M. Deana, E. C. Sousa, I. M. Ranieri, S. L. Baldochi, and N. U. Wetter, “1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm,” Proc. SPIE 8235, 82350G (2012).
[Crossref]

Other (1)

G. Aka, L. Zheng, A. Ikesue, Y. Aung, and P. Loiseau, “CW intracavity frequency doubled Nd:YAG core ceramics composite at 473 nm,” in Proceedings of Conference on Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2014), paper AM4A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the DBMC laser cavity (a) and detail of the pump region (b). M2 (flat) and the curved folding mirror M3 (3 m ROC) are highly reflecting mirrors. The flat output coupling mirror M1 has 20% transmission.
Fig. 2
Fig. 2 Emission spectrum of the two pump sources used in this work. To the left the 792 nm diode, to the right the VBG equipped 797 nm diode. For comparison a standard 797 nm diode bar without VBG (dotted line) is also shown.
Fig. 3
Fig. 3 a) simulated diode emission; b) measured crystal absorption spectrum of a 1mol% Nd:YLF crystal; c) absorption isoquant curves as a function of distance from pump facet (y-axis) and diode temperature (x-axis). Each curve represents a fraction of absorbed pump power indicated by its number.
Fig. 4
Fig. 4 a) absorption isoquant curves as a function of distance from pump facet (y-axis) and diode temperature (x-axis) for the 792 nm diode (a) and the VBG equipped diode (b).
Fig. 5
Fig. 5 local effective absorption coefficient for the three simulated diodes (a) and the percentage of absorbed pump power as a function of L (b).
Fig. 6
Fig. 6 Simulated input- output power curves for the three diodes, the narrow linewidth (a), the 797 nm VBG (b) and the standard 792 nm (c).
Fig. 7
Fig. 7 a) output power in TEM00 mode as a function of absorbed pump power using the VBG-equipped diode (squares) and the 792 nm diode from [7]. The lines represent a linear regression considering all experimental data. b) beam profile and M2 measurements of the DBMC laser

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F( T,L )= D( υ,T ) { e C( ν )L e C( ν )( L+d ) }δν
α eff ( T,L )=lnF( T,L )/L

Metrics