Abstract

Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s

Gyungock Kim, Jeong Woo Park, In Gyoo Kim, Sanghoon Kim, Sanggi Kim, Jong Moo Lee, Gun Sik Park, Jiho Joo, Ki-Seok Jang, Jin Hyuk Oh, Sun Ae Kim, Jong Hoon Kim, Jun Young Lee, Jong Moon Park, Do-Won Kim, Deog-Kyoon Jeong, Moon-Sang Hwang, Jeong-Kyoum Kim, Kyu-Sang Park, Han-Kyu Chi, Hyun-Chang Kim, Dong-Wook Kim, and Mu Hee Cho
Opt. Express 19(27) 26936-26947 (2011)

Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver

Xuezhe Zheng, Dinesh Patil, Jon Lexau, Frankie Liu, Guoliang Li, Hiren Thacker, Ying Luo, Ivan Shubin, Jieda Li, Jin Yao, Po Dong, Dazeng Feng, Mehdi Asghari, Thierry Pinguet, Attila Mekis, Philip Amberg, Michael Dayringer, Jon Gainsley, Hesam Fathi Moghadam, Elad Alon, Kannan Raj, Ron Ho, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 19(6) 5172-5186 (2011)

Polymer waveguides for electro-optical integration in data centers and high-performance computers

Roger Dangel, Jens Hofrichter, Folkert Horst, Daniel Jubin, Antonio La Porta, Norbert Meier, Ibrahim Murat Soganci, Jonas Weiss, and Bert Jan Offrein
Opt. Express 23(4) 4736-4750 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  3. F. E. Doany, “High Density Optical Interconnects for High Performance Computing,” Optical Fiber Communication Conference 2014, San Francisco, USA, M3G.1 (2014).
    [Crossref]
  4. F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
    [Crossref]
  5. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
  6. M. Rakowski, M. Pantouvaki, H. Yu, W. Bogaerts, K. de Meyer, M. Steyaert, B. Snyder, P. O'Brien, J. Ryckaert, P. Absil, and J. Van Campenhout, “Low-Power, Low-Penalty, Flip-Chip Integrated, 10Gb/s Ring-Based 1V CMOS Photonics Transmitter,” Optical Fiber Communication Conference 2013, Anaheim, USA, OM2H (2013).
    [Crossref]
  7. V. I. Kopp, J. Park, M. S. Wlodawski, E. Hubner, J. Singer, D. Neugroschl, A. Z. Genack, P. Dumon, J. Van Campenhout, and P. Absil, “Two-dimensional, 37-channel, High-bandwidth, Ultra-dense Silicon Photonics Optical Interface,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), post-deadline paper (2014).
    [Crossref]
  8. D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
    [Crossref]
  9. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  10. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  11. F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
    [Crossref]
  12. P. Verheyen, M. Pantouvaki, P. De Heyn, H. Chen, G. Lepage, J. De Coster, P. Dumon, A. Masood, D. Van Thourhout, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Highly Uniform 25 Gb/s Si Photonics Platform for High-Density, Low-Power WDM Optical Interconnects,” Integrated Photonics Research Conference 2014, United States of America, (2014).
  13. A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
    [Crossref]
  14. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” Group Four Photonics Conference 2011, London, United Kingdom, P1.5 (2011).
    [Crossref]
  15. S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. D. VanThourhout, J. Van Campenhout, and P. Absil Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm CMOS platform,” Optical Fiber Communication Conference 2014, United States of America, paper Th2A.33 (2014).
    [Crossref]
  16. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  17. L. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. De Dobbelaere, “Silicon photonics devices libraries for high-speed transceivers,” IEEE Photonics Conference 2014, San Diego, United States of America, MC3.4 (2014).
    [Crossref]
  18. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
    [Crossref] [PubMed]
  19. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  20. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, D. Van Thourhout, and J. Van Campenhout, “Polarization-Insensitive 5x20Gb/s WDM Ge Receiver using Compact Si Ring Filters with Collective Thermal Tuning,” Optical Fiber Communications Conference 2014, United States of America, paper Th4C.5 (2014).
    [Crossref]
  21. S. Agarwal, M. Ingels, M. Rakowski, M. Pantouvaki, M. Steyaert, P. Absil, and J. Van Campenhout, “Monitoring Optical Modulation Amplitude using a Low-Power CMOS Circuit for Thermal Control of Si Ring Transmitters,” ECOC Conference September 2014, France P.4.17 (2014).
    [Crossref]

2014 (2)

2013 (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

2012 (2)

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

2011 (2)

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2003 (1)

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Absil, P.

Alon, E.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Amberg, P.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Borel, P. I.

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Chong, H.

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

Cunningham, J.

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Cunningham, J. E.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Davids, P. S.

Dayringer, M.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

DeRose, C. T.

Ding, L.

Fisher, M.

Frandsen, L. H.

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Gainsley, J.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

Ho, R.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Huang, Y.

Jayatilleka, H.

Koka, P.

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Krishnamoorthy, A.

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Krishnamoorthy, A. V.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Lepage, G.

Lexau, J.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Liu, F. Y.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Lo, G.-Q.

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

Mekis, A.

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moghadam, H. F.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Patil, D.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Pinguet, T.

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Poon, J. K. S.

Raj, K.

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Roelkens, G.

Sacher, W. D.

Schwetman, H.

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Selvaraja, S.

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Shubin, I.

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Starbuck, A. L.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Taylor, B. J. F.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

Thacker, H.

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Trotter, D. C.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Verheyen, P.

Vermeulen, D.

Watts, M. R.

Zheng, X.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Zortman, W. A.

IEEE Commun. Mag. (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-Order Modulation for Client Optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).

IEEE Photon. J. (1)

A. V. Krishnamoorthy, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Taillaert, H. Chong, R. M. De La Rue, P. I. Borel, L. H. Frandsen, and R. Baets, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

J. Solid State Circuits (2)

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” J. Solid State Circuits 47(9), 2049–2067 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Proc. IEEE (2)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

A. Krishnamoorthy, H. Schwetman, P. Koka, I. Shubin, and J. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Other (9)

F. E. Doany, “High Density Optical Interconnects for High Performance Computing,” Optical Fiber Communication Conference 2014, San Francisco, USA, M3G.1 (2014).
[Crossref]

M. Rakowski, M. Pantouvaki, H. Yu, W. Bogaerts, K. de Meyer, M. Steyaert, B. Snyder, P. O'Brien, J. Ryckaert, P. Absil, and J. Van Campenhout, “Low-Power, Low-Penalty, Flip-Chip Integrated, 10Gb/s Ring-Based 1V CMOS Photonics Transmitter,” Optical Fiber Communication Conference 2013, Anaheim, USA, OM2H (2013).
[Crossref]

V. I. Kopp, J. Park, M. S. Wlodawski, E. Hubner, J. Singer, D. Neugroschl, A. Z. Genack, P. Dumon, J. Van Campenhout, and P. Absil, “Two-dimensional, 37-channel, High-bandwidth, Ultra-dense Silicon Photonics Optical Interface,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), post-deadline paper (2014).
[Crossref]

P. Verheyen, M. Pantouvaki, P. De Heyn, H. Chen, G. Lepage, J. De Coster, P. Dumon, A. Masood, D. Van Thourhout, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Highly Uniform 25 Gb/s Si Photonics Platform for High-Density, Low-Power WDM Optical Interconnects,” Integrated Photonics Research Conference 2014, United States of America, (2014).

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, D. Van Thourhout, and J. Van Campenhout, “Polarization-Insensitive 5x20Gb/s WDM Ge Receiver using Compact Si Ring Filters with Collective Thermal Tuning,” Optical Fiber Communications Conference 2014, United States of America, paper Th4C.5 (2014).
[Crossref]

S. Agarwal, M. Ingels, M. Rakowski, M. Pantouvaki, M. Steyaert, P. Absil, and J. Van Campenhout, “Monitoring Optical Modulation Amplitude using a Low-Power CMOS Circuit for Thermal Control of Si Ring Transmitters,” ECOC Conference September 2014, France P.4.17 (2014).
[Crossref]

L. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. De Dobbelaere, “Silicon photonics devices libraries for high-speed transceivers,” IEEE Photonics Conference 2014, San Diego, United States of America, MC3.4 (2014).
[Crossref]

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” Group Four Photonics Conference 2011, London, United Kingdom, P1.5 (2011).
[Crossref]

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. D. VanThourhout, J. Van Campenhout, and P. Absil Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm CMOS platform,” Optical Fiber Communication Conference 2014, United States of America, paper Th2A.33 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Example of a high density optical transceiver wavelength and space division multiplexing architecture based on compact micro-ring resonator devices. The schematic is made assuming a 40μm pitch for the micro-bumps.
Fig. 2
Fig. 2 Schematic of the final cross-section of the fabricated silicon photonics wafer co-integrating passives, actives, heaters, metal interconnects and bondpads.
Fig. 3
Fig. 3 200mm wafer-scale distribution of the single polarization (TE) grating coupler using poly-Si overlay for enhanced coupling efficiency. (a) minimum insertion loss obtained at the peak wavelength, (b) peak wavelength (at minimum insertion loss) and (c) bandwidth of the grating spectrum at −1dB of the minimum insertion loss (26 dies tested).
Fig. 4
Fig. 4 Summary of the main characteristics of the 5-channel WDM MRR filter: (a) device layout with common heater control, (b) 2-ring filter racetrack layout with undercut holes design, (c) 5-channel WDM spectrum, (d) cross-section SEM of the local substrate undercut, (e) wavelength shift as function of power dissipated in heaters comparing with and without local undercut (UCUT).
Fig. 5
Fig. 5 Performance statistics of the 5-channel WDM filter across a 200mm wafer (130 dies measured): (a) wavelength of the first channel of the filter, (b) average 1dB bandwidth in a filter, (c) worst crosstalk within a filter and (d) worst channel insertion loss within a filter.
Fig. 6
Fig. 6 MRR Modulator design layout (left) and microscope picture of the fabricated devices (right).
Fig. 7
Fig. 7 MRR modulator static performance statistics across a 200mm wafer: (a) Maximum extinction ratio for 1Vp-p swing, (b) Insertion loss at maximum extinction ratio, (c) Quality factor, (d) Modulation efficiency and (e) Heater efficiency.
Fig. 8
Fig. 8 MRR modulator dynamic performance statistics across a 200mm wafer: (a) p-n diode resistance R1, (b) capacitance C1, (c) equivalent circuit model and (d) 28Gbps eye diagram (PRBS = 231-1, bias = −1V, Vpp = 1.5V).
Fig. 9
Fig. 9 Ge WPD performance statistics across a 200mm wafer for three types of designs. Measurements were performed at room temperature, under −1V bias and at 1555nm.
Fig. 10
Fig. 10 Ge/Si vertical diode leakage current across lots using different maskset.

Metrics