Abstract

We report the transfer printing of blue-emitting micron-scale light-emitting diodes (micro-LEDs) onto fused silica and diamond substrates without the use of intermediary adhesion layers. A consistent Van der Waals bond was achieved via liquid capillary action, despite curvature of the LED membranes following release from their native silicon growth substrates. The excellence of diamond as a heat-spreader allowed the printed membrane LEDs to achieve optical power output density of 10 W/cm2 when operated at a current density of 254 A/cm2. This high-current-density operation enabled optical data transmission from the LEDs at 400 Mbit/s.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays

Pengfei Tian, Jonathan J. D. McKendry, Erdan Gu, Zhizhong Chen, Yongjian Sun, Guoyi Zhang, Martin D. Dawson, and Ran Liu
Opt. Express 24(1) 699-707 (2016)

A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation

Indra Karnadi, Jaehyeon Son, Ju-Young Kim, Hoon Jang, Seungwoo Lee, Ki Soo Kim, Bumki Min, and Yong-Hee Lee
Opt. Express 22(10) 12115-12121 (2014)

Semiconductor membrane external-cavity surface-emitting laser (MECSEL)

Hermann Kahle, Cherry May N. Mateo, Uwe Brauch, Philipp Tatar-Mathes, Roman Bek, Michael Jetter, Thomas Graf, and Peter Michler
Optica 3(12) 1506-1512 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
    [Crossref] [PubMed]
  2. T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
    [Crossref]
  3. J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
    [Crossref]
  4. Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
    [Crossref]
  5. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
    [Crossref]
  6. S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
    [Crossref] [PubMed]
  7. E. James, Mark, Polymer Data Handbook, (Oxford University, 1999), pp. 424.
  8. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651 (2000).
    [Crossref]
  9. D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
    [Crossref]
  10. D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
    [Crossref]
  11. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
    [Crossref]
  12. A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
    [Crossref]
  13. Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
    [Crossref]
  14. R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond, (Wiley-VCH, 2013), Ch. 2 and 11.
  15. C. Kittel, “Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75(6), 972–974 (1949).
    [Crossref]
  16. J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
    [Crossref]
  17. P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
    [Crossref]
  18. X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
    [Crossref]
  19. MicroChem SU-8 Photoresists datasheet”, http://www.microchem.com

2014 (2)

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

2013 (2)

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

2012 (2)

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

2011 (2)

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

2010 (3)

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

2009 (1)

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

2006 (1)

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
[Crossref]

2000 (1)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651 (2000).
[Crossref]

1963 (1)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

1949 (1)

C. Kittel, “Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75(6), 972–974 (1949).
[Crossref]

Ahmed, N.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Astles, M.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Brueckner, E.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Cao, X. A.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
[Crossref]

Carlson, A.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Chatterjee, A.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Chen, W.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Chen, Y.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Choquette, K.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Dan Lee, S.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Danielson, G. C.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

Dawson, M. D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Dawson, P.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Demir, H. V.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Detchprohm, T.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Dikme, Y.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Elgan, S. L.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Ferreira, P. M.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Glass, P.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Gong, Z.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Green, R. P.

Gu, E.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Guilhabert, B.

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

Haberlen, M.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Häberlen, M.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Henderson, R. K.

Heuken, M.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Huang, Y.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Humphreys, C.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Humphreys, C. J.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Hylton, N.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Hyun Lee, S.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Ji, Y.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Jin, S.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Jin, S. H.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Ju, Z. G.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Kane, M.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Kappers, M.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Kappers, M. J.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Kelly, A. E.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Kim, H. S.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Kim, S.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Kim, T.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

Kittel, C.

C. Kittel, “Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75(6), 972–974 (1949).
[Crossref]

Kovalsky, A.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Kyaw, Z.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Lane, P.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Laurand, N.

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

LeBoeuf, S. F.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
[Crossref]

Li, X.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Li, Y.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Liau, Z. L.

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651 (2000).
[Crossref]

Liu, Z.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Lu, C.

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Martin, T.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Massoubre, D.

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Maycock, P. D.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

McAleese, C.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

McKendry, J.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

McKendry, J. J. D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

McLaughlin, K. K.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Nuzzo, R. G.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Pakes, A.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Phillips, A.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Phillips, W. A.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Plawsky, J.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Rae, B. R.

Rogers, J. A.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Salcianu, C.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Salcianu, C. O.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Senawiratne, J.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Shanks, H. R.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

Shi, Y.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

Shin, G.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Sidles, P. H.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

Sitti, M.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Song, J.

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Stecher, T. E.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
[Crossref]

Su Yu, J.

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Sulkin, J.

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

Sun, X. W.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Tan, S. T.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Thomas, S.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Thrush, E. J.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Thrush, T.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Tian, P.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Trindade, A. J.

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

Wallis, D.

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Wallis, D. J.

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Watson, I. M.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Watson, S.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Wetzel, C.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Wu, J.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Xia, Y.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Zhang, S.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

Zhang, Z.-H.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

Zhao, W.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Zhu, D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Zhu, M.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Appl. Phys. Lett. (4)

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett. 100(12), 123503 (2012).
[Crossref]

T. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, “Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing,” Appl. Phys. Lett. 104(5), 051901 (2014).
[Crossref]

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651 (2000).
[Crossref]

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27(5), 329–331 (2006).
[Crossref]

J. Appl. Phys. (4)

Y. Li, Y. Shi, J. Song, C. Lu, T. Kim, J. A. Rogers, and Y. Huang, “Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation,” J. Appl. Phys. 113(14), 144505 (2013).
[Crossref]

D. Zhu, C. McAleese, M. Haberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, and C. Humphreys, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109(1), 014502 (2011).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. Lightwave Technol. (1)

Phys. Rev. (2)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of Silicon from 300 to 1400°K,” Phys. Rev. 130(5), 1743–1748 (1963).
[Crossref]

C. Kittel, “Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75(6), 972–974 (1949).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10072–10077 (2011).
[Crossref] [PubMed]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A. 107(40), 17095–17100 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Zhu, C. McAleese, K. K. McLaughlin, M. Häberlen, C. O. Salcianu, E. J. Thrush, M. J. Kappers, W. A. Phillips, P. Lane, D. J. Wallis, T. Martin, M. Astles, S. Thomas, A. Pakes, M. Heuken, and C. J. Humphreys, “GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE,” Proc. SPIE 7231, 723118 (2009).
[Crossref]

Thin Solid Films (1)

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Other (3)

E. James, Mark, Polymer Data Handbook, (Oxford University, 1999), pp. 424.

MicroChem SU-8 Photoresists datasheet”, http://www.microchem.com

R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond, (Wiley-VCH, 2013), Ch. 2 and 11.

Supplementary Material (1)

» Media 1: MP4 (15324 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of transfer printing using capillary bonding. The left-hand figure represents the pick-up of a suspended device using an elastomeric stamp (a). Upon pick-up, LEDs are compressed against an acetone-wetted cloth (b) and released when the backside contacts receiving substrate (c). The excess of liquid aids the positioning and release of the LED from the transporting stamp. After thermal curing, the LED is bonded to the new substrate (d).

Fig. 2
Fig. 2

Images illustrating the process of capillary bonding of individual LEDs onto rigid substrates. Parts (a) and (b) are optical microscope views through the transparent stamp at successive stages: (a) after wetting of the LED backside, contact is made with the receiving substrate; (b) stamp retraction allows the liquid to reflow underneath the LED. Parts (c) and (d) are views through the substrate showing interference effects from an air gap left round after liquid evaporation and bonding in the central region: (c) colored fringes visible under white light; (d) fringes observed under laser light.

Fig. 3
Fig. 3

Backplane curvature measurements. In (a), the calculated height of the air gap between a bonded LED and the substrate is represented as a mesh reconstructed by the photographed interference pattern. The colorless central area indicates where contact is assumed to occur. In part (b), an AFM line scan over the central area of an unbonded LED die is shown and extrapolated with a parabolic fit. Part (c) shows an SEM image of a micro-LED transfer printed onto a rigid substrate (at 45° tilt), and connected to Ti/Au metal tracks.

Fig. 4
Fig. 4

Thermal conductivities of media surrounding the respective transfer-printed LEDs (a): The left half-section of the device illustrates the air-exposed baseline devices deposited on PDMS adhesion enhancement layers. The right half-section represents the case of the better performing substrates (diamond and silica) with improved heat dissipation and volumetric SU-8 (κ ~0.3 W/m.K [19]) encapsulation on top. Full device arrays can be seen in the microscope images in parts (b), (c) and (d) with configurations of 1, 2 and 4 active LEDs respectively.

Fig. 5
Fig. 5

Characteristics of an individual LED in operation on different substrates. In (a), J-V curves for individual LEDs on PDMS/PET, silica and diamond substrates, respectively. In (b) the corresponding L-J with the inset showing a magnification of the device emission on the PDMS/PET substrates used as a baseline comparison achieving a maximum optical power density of 55 mW/cm2.

Fig. 6
Fig. 6

(a) Thermal imaging of LED arrays with a single device powered on diamond (top) and silica (bottom). The emitting LED is identified in the last diamond frame as a black dot. The last frame of the silica-substrate row shows a magnified view of the die and its metal interconnection tracks. The captured images show the measured temperature corrected for the LED material (GaN); the rest of the image should be interpreted as a relative comparison. Part (b) shows the dependence of LED temperature on the injected current density (see Media 1).

Fig. 7
Fig. 7

EL peak shift of a representative single LEDs as a function of increasing injected current on diamond (red triangles) and silica (blue squares). The inset shows representative EL spectra at 46 A/cm2 for both substrates.

Fig. 8
Fig. 8

E-O bandwidths as a function of dc drive current density of representative LEDs deposited onto diamond and silica.

Fig. 9
Fig. 9

Data-transmission measurements from representative LEDs deposited onto diamond (top row) and silica (lower row). The eye diagrams were acquired with the same dc applied current throughout.

Metrics