Abstract

A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations

Chung-Yi Li, Hai-Han Lu, Ting-Chieh Lu, Chien-An Chu, Bo-Rui Chen, Chun-Yu Lin, and Peng-Chun Peng
Opt. Express 23(25) 31807-31816 (2015)

A full-duplex lightwave transmission system with an innovative VCSEL-based PM-to-IM converter

Chun-Yu Lin, Hai-Han Lu, Ching-Hung Chang, Chung-Yi Li, Tai-Wei Jhang, Sheng-Siang Ruan, and Kuan-Hung Wu
Opt. Express 22(8) 9993-10001 (2014)

Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals

Chung-Yi Li, Heng-Sheng Su, Chia-Yi Chen, Hai-Han Lu, Hwan-Wen Chen, Ching-Hung Chang, and Chang-Han Jiang
Opt. Express 19(15) 14000-14007 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Ying, C. Y. Li, H. H. Lu, C. H. Chang, J. H. Chen, and J. R. Zheng, “A hybrid WDM lightwave transport system based on fiber-wireless and fiber-VLLC convergences,” IEEE Photon. J. 6(6), 7200709 (2014).
    [Crossref]
  2. . C. Tang, X. Li, F. Li, J. Zhang, and J. Xiao, “A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band,” Conf. on Opt. Fiber Commun. (OFC) W2A.4 (2014).
  3. C. Lim, Y. Yang, and A. Nirmalathas, “Wireless signals transport in fiber-wireless links: digitized versus analog,” Conf. on Opt. Internet (COIN) TC2–1 (2014).
  4. C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
    [Crossref]
  5. C. Y. Lin, H. H. Lu, C. Y. Li, P. Y. Wu, P. C. Peng, T. W. Jhang, and C. Y. Lin, “Employing injection-locked FP LDs to set up a hybrid CATV/MW/MMW WDM light wave transmission system,” Opt. Lett. 39(13), 3931–3934 (2014).
    [Crossref] [PubMed]
  6. L. M. Pessoa, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  7. C. Y. Li, H. H. Lu, C. H. Chang, C. Y. Lin, P. Y. Wu, J. R. Zheng, and C. R. Lin, “Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system,” Opt. Express 22(13), 16188–16196 (2014).
    [Crossref] [PubMed]
  8. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
    [Crossref]
  9. R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14(9), 2339–2347 (1997).
    [Crossref]
  10. M. Aamer, A. Griol, A. Brimont, A. M. Gutierrez, P. Sanchis, and A. Håkansson, “Increased sensitivity through maximizing the extinction ratio of SOI delay-interferometer receiver for 10G DPSK,” Opt. Express 20(13), 14698–14704 (2012).
    [Crossref] [PubMed]
  11. P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” J. Lightwave Technol. 29(16), 2422–2427 (2011).
    [Crossref]
  12. H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
    [Crossref]
  13. C. H. Chang, P. C. Peng, H. H. Lu, C. L. Shih, and H. W. Chen, “Simplified radio-over-fiber transport systems with a low-cost multiband light source,” Opt. Lett. 35(23), 4021–4023 (2010).
    [Crossref] [PubMed]
  14. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [Crossref] [PubMed]
  15. D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).
  16. M. Jeffers, NCTA Recommended Practices for Measurements on Cable Television Systems, NCTA, (1989).

2014 (4)

2012 (3)

2011 (1)

2010 (1)

2006 (1)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

1997 (1)

1982 (1)

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[Crossref]

Aamer, M.

Brimont, A.

Chang, C. H.

Chang, G. K.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Chen, C. Y.

Chen, H. W.

Chen, J. H.

C. Y. Ying, C. Y. Li, H. H. Lu, C. H. Chang, J. H. Chen, and J. R. Zheng, “A hybrid WDM lightwave transport system based on fiber-wireless and fiber-VLLC convergences,” IEEE Photon. J. 6(6), 7200709 (2014).
[Crossref]

Chen, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Coelho, D.

Emplit, P.

Foursa, D.

Fukasawa, Y.

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

Griol, A.

Gutierrez, A. M.

Haelterman, M.

Håkansson, A.

He, S.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Jacobsen, G.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[Crossref]

Jhang, T. W.

Jia, Z.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Kakuta, Y.

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

Kashyap, R.

Kung Chang, G.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Leners, R.

Li, C. Y.

Lin, C. R.

Lin, C. Y.

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Lu, H. H.

Menamara, D.

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

Olesen, H.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[Crossref]

Peng, P. C.

Pessoa, L. M.

Salgado, H. M.

Sanchis, P.

Shih, C. L.

Shirakawa, Y.

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

Su, H. S.

Wakabayashi, Y.

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

Wang, T.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Wu, H. W.

Wu, P. Y.

Xu, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Ye, C.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Ying, C. L.

Ying, C. Y.

C. Y. Ying, C. Y. Li, H. H. Lu, C. H. Chang, J. H. Chen, and J. R. Zheng, “A hybrid WDM lightwave transport system based on fiber-wireless and fiber-VLLC convergences,” IEEE Photon. J. 6(6), 7200709 (2014).
[Crossref]

Yu, J.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Zhang, L.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Zheng, J. R.

C. Y. Ying, C. Y. Li, H. H. Lu, C. H. Chang, J. H. Chen, and J. R. Zheng, “A hybrid WDM lightwave transport system based on fiber-wireless and fiber-VLLC convergences,” IEEE Photon. J. 6(6), 7200709 (2014).
[Crossref]

C. Y. Li, H. H. Lu, C. H. Chang, C. Y. Lin, P. Y. Wu, J. R. Zheng, and C. R. Lin, “Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system,” Opt. Express 22(13), 16188–16196 (2014).
[Crossref] [PubMed]

Zhu, M.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[Crossref]

IEEE Photon. J. (1)

C. Y. Ying, C. Y. Li, H. H. Lu, C. H. Chang, J. H. Chen, and J. R. Zheng, “A hybrid WDM lightwave transport system based on fiber-wireless and fiber-VLLC convergences,” IEEE Photon. J. 6(6), 7200709 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Other (4)

. C. Tang, X. Li, F. Li, J. Zhang, and J. Xiao, “A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band,” Conf. on Opt. Fiber Commun. (OFC) W2A.4 (2014).

C. Lim, Y. Yang, and A. Nirmalathas, “Wireless signals transport in fiber-wireless links: digitized versus analog,” Conf. on Opt. Internet (COIN) TC2–1 (2014).

D. Menamara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers.19–26 (1996).

M. Jeffers, NCTA Recommended Practices for Measurements on Cable Television Systems, NCTA, (1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The configuration of the proposed full-duplex CATV/wireless-over-fiber lightwave transmission systems consisting of one BLS, two optical ILs, one intensity modulator, and one phase modulator.
Fig. 2
Fig. 2 (a) The configuration of the proposed BLS. (b)The optical spectra of the generated lightwaves before and after the OSNR enhancement scheme.
Figs. 3
Figs. 3 (a) - 3(g) The optical spectra of different optical signals at several interesting points in the optical path [insert (a) - (g) of Fig. 1].
Fig. 4
Fig. 4 The reflection spectrum of the FBG (λc = 1540.05 nm) employed in the experiment.
Fig. 5
Fig. 5 A schematic diagram of the push-pull scheme.
Fig. 6
Fig. 6 The measured CNR/CSO/CTB values with and without push-pull scheme.
Fig. 7
Fig. 7 The measured BER curves of 10Gbps/100GHz MMW data signal for BTB and over a 40-km SMF and a 10-m RF wireless transport scenarios.
Fig. 8
Fig. 8 The measured BER curves of 10Gbps/50GHz MMW data signal for BTB and over a 40-km SMF and a 10-m RF wireless transport scenarios.
Fig. 9
Fig. 9 The measured BER curves of 10Gbps/25GHz MW data signal for BTB and over a 40-km SMF and a 10-m RF wireless transport scenarios.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(t)= 1+Msin(2π f m t) exp{ jβcos[ 2π f m t+ ϕ f ( I o , f m ) ] }
S(f)=Σ | J n ( Δf f m ) M 4 { J n+1 ( Δf f m ) e jϕ + J n1 ( Δf f m ) e jϕ } | 2 δ( f( f 0 +n f m ) )
A o = a 1 A i + a 3 A i 3 + a 5 A i 5
P o = c 1 P i + c 2 P i 2 + c 3 P i 3
A o =( a 1 c 1 ) P i +( a 1 c 2 ) P i 2 +( a 1 c 3 + a 3 c 1 3 ) P i 3
a 1 c 3 = a 3 c 1 3
A o =( a 1 c 1 ) P i +( a 1 c 2 ) P i 2

Metrics