Abstract

An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings

Evgeny Popov, Nicolas Bonod, and Stefan Enoch
Opt. Express 15(7) 4224-4237 (2007)

Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama
Opt. Express 14(2) 832-846 (2006)

Strong three-dimensional field localization and enhancement on deep sinusoidal gratings with two-dimensional periodicity

Evgeny Popov, Jerome Wenger, John Hoose, and Svetlen Tonchev
Opt. Lett. 38(22) 4876-4879 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [Crossref]
  2. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
    [Crossref]
  3. E. Popov, “Light diffraction by relief gratings: a microscopic and macroscopic view,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1993) Vol. XXXI, pp. 139–187.
    [Crossref]
  4. D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
    [Crossref]
  5. A. Wirgin and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
    [Crossref]
  6. N. Perney, J. J. Baumerg, M. E. Zoorob, M. D. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [Crossref] [PubMed]
  7. R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28(4), 1870 (1983).
    [Crossref]
  8. R. Reinisch, E. Popov, and M. Nevière, “Second-harmonic-generation-induced optical bistability in prism or grating couplers,” Opt. Lett. 20(8), 854–856 (1995).
    [Crossref] [PubMed]
  9. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y. Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45(9), 1938–1942 (2006).
    [Crossref] [PubMed]
  10. E. Popov and L. Tsonev, “Electromagnetic field enhancement in deep metallic gratings,” Opt. Commun. 69(3), 193–198 (1989).
    [Crossref]
  11. E. Popov, J. Wenger, J. Hoose, and S. Tonchev, “Strong three-dimensional field localization and enhancement on deep sinusoidal gratings with two-dimensional periodicity,” Opt. Lett. 38(22), 4876–4879 (2013).
    [Crossref] [PubMed]
  12. F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
    [Crossref]
  13. E. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express 15(7), 4224–4237 (2007).
    [Crossref] [PubMed]
  14. L. Langguth and A. Femius Koenderink, “Simple model for plasmon enhanced fluorescence correlation spectroscopy,” Opt. Express 22(13), 15397–15409 (2014).
    [Crossref] [PubMed]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  16. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  17. G. Demésy, F. Zolla, A. Nicolet, and M. Commandré, “All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack,” J. Opt. Soc. Am. A 27(4), 878–889 (2010).
    [Crossref]
  18. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [Crossref]
  19. C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009).
    [Crossref]
  20. P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
    [Crossref]
  21. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7,8), 163–182 (1944).
    [Crossref]
  22. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
    [Crossref]
  23. H. T. Liu and P. Lalanne, “Microscopic theory of extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [Crossref] [PubMed]
  24. E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44(29), 6141–6154 (2005).
    [Crossref] [PubMed]
  25. A. A. Rizvi and C. H. Papas, “Power flow structures in two dimensional electromagnetic fields,” Prog. Electromag. Res. PIER 29, 261–294 (2000).
    [Crossref]
  26. E. Popov, L. Tsonev, and D. Maystre, “Gratings—general properties in Littrow mount and energy flow distribution,” J. Mod. Opt. 37(3), 367–377 (1990).
    [Crossref]
  27. A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
    [Crossref]
  28. D. Gray, American Institute of Physics Handbook, 2 (Mc Graw-Hill, 1963).
  29. J. Chanderzon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [Crossref]
  30. L. Li and J. Chanderzon, “Improvement of the coordinate transformation method for surface-relief gratings with sharp edges,” J. Opt. Soc. Am. A 13(11), 2247–2255 (1996).
    [Crossref]
  31. G. Granet, “Coordinate transformation method,” in Gratings: Theory and Numeric Applications, 2E. Popov, ed. (Aix-Marseille Université, 2014), Chap. 8.
  32. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
    [Crossref]
  33. E. Popov, N. Bonod, and S. Enoch, “Non-Bloch plasmonic stop-band in real-metal gratings,” Opt. Express 15(10), 6241–6250 (2007).
    [Crossref] [PubMed]
  34. O.M. Rayleigh Lord, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
    [Crossref]
  35. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfelds waves)”, J. Opt. Soc. Am. 31(3), 213–222 (1941).
    [Crossref]

2014 (1)

2013 (1)

2010 (1)

2009 (1)

C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009).
[Crossref]

2008 (1)

H. T. Liu and P. Lalanne, “Microscopic theory of extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

2005 (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44(29), 6141–6154 (2005).
[Crossref] [PubMed]

2004 (2)

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

2000 (1)

A. A. Rizvi and C. H. Papas, “Power flow structures in two dimensional electromagnetic fields,” Prog. Electromag. Res. PIER 29, 261–294 (2000).
[Crossref]

1999 (2)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[Crossref]

1998 (1)

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

1996 (1)

1995 (1)

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

1990 (1)

E. Popov, L. Tsonev, and D. Maystre, “Gratings—general properties in Littrow mount and energy flow distribution,” J. Mod. Opt. 37(3), 367–377 (1990).
[Crossref]

1989 (1)

E. Popov and L. Tsonev, “Electromagnetic field enhancement in deep metallic gratings,” Opt. Commun. 69(3), 193–198 (1989).
[Crossref]

1984 (1)

A. Wirgin and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[Crossref]

1983 (1)

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28(4), 1870 (1983).
[Crossref]

1982 (1)

1980 (1)

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

1976 (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[Crossref]

1965 (1)

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7,8), 163–182 (1944).
[Crossref]

1941 (1)

1907 (1)

O.M. Rayleigh Lord, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
[Crossref]

Baumerg, J. J.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7,8), 163–182 (1944).
[Crossref]

Bonod, N.

Bustarret, E.

Chanderzon, J.

Charlton, M. D.

Chen, S.-J.

Chien, F.-C.

Chu, Y.-M.

Commandré, M.

Cornet, G.

Dechelette, A.

Demésy, G.

Dular, P.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

Dupuis, M. T.

Ebbesen, T. W.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

Enoch, S.

Fano, U.

Fehrembach, A. L.

Femius Koenderink, A.

Fournier, T.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

Genack, A. Z.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

Gersten, J. I.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

Geuzaine, C.

C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009).
[Crossref]

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

Gramila, T. J.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

Granet, G.

G. Granet, “Coordinate transformation method,” in Gratings: Theory and Numeric Applications, 2E. Popov, ed. (Aix-Marseille Université, 2014), Chap. 8.

Gray, D.

D. Gray, American Institute of Physics Handbook, 2 (Mc Graw-Hill, 1963).

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

Guenneau, S.

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Henrotte, F.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

Hessel, A.

Hoose, J.

Hutley, M. C.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[Crossref]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Langguth, L.

Lee, K.-L.

Legros, W.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

Lezec, H. J.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

Li, L.

Lin, C.-Y.

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Lopez-Rios, T.

A. Wirgin and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[Crossref]

López-Rios, T.

Mahnkopf, S.

Mao, Y.-C.

Maystre, D.

E. Popov, L. Tsonev, and D. Maystre, “Gratings—general properties in Littrow mount and energy flow distribution,” J. Mod. Opt. 37(3), 367–377 (1990).
[Crossref]

J. Chanderzon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[Crossref]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[Crossref]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Netti, C. M.

Nevière, M.

Nicolet, A.

G. Demésy, F. Zolla, A. Nicolet, and M. Commandré, “All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack,” J. Opt. Soc. Am. A 27(4), 878–889 (2010).
[Crossref]

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

Oliner, A. A.

Pannetier, B.

Papas, C. H.

A. A. Rizvi and C. H. Papas, “Power flow structures in two dimensional electromagnetic fields,” Prog. Electromag. Res. PIER 29, 261–294 (2000).
[Crossref]

Perney, N.

Popov, E.

Rayleigh Lord, O.M.

O.M. Rayleigh Lord, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

Reinisch, R.

R. Reinisch, E. Popov, and M. Nevière, “Second-harmonic-generation-induced optical bistability in prism or grating couplers,” Opt. Lett. 20(8), 854–856 (1995).
[Crossref] [PubMed]

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28(4), 1870 (1983).
[Crossref]

Remacle, J.-F.

C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009).
[Crossref]

Rizvi, A. A.

A. A. Rizvi and C. H. Papas, “Power flow structures in two dimensional electromagnetic fields,” Prog. Electromag. Res. PIER 29, 261–294 (2000).
[Crossref]

Sánchez-Dehesa, J.

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Thio, T.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

Tonchev, S.

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, “Gratings—general properties in Littrow mount and energy flow distribution,” J. Mod. Opt. 37(3), 367–377 (1990).
[Crossref]

E. Popov and L. Tsonev, “Electromagnetic field enhancement in deep metallic gratings,” Opt. Commun. 69(3), 193–198 (1989).
[Crossref]

Wang, W.-H.

Wei, P.-K.

Weitz, D. A.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

Wenger, J.

Wirgin, A.

A. Wirgin and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
[Crossref]

Yih, J.-N.

Zolla, F.

G. Demésy, F. Zolla, A. Nicolet, and M. Commandré, “All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack,” J. Opt. Soc. Am. A 27(4), 878–889 (2010).
[Crossref]

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

Zoorob, M. E.

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[Crossref]

Appl. Opt. (3)

IEEE Trans. Magn. (1)

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[Crossref]

Int. J. Numer. Meth. Eng. (1)

C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Comput. Appli. Math. (1)

A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, “Modelling of electromagnetic waves in periodic media with finite elements,” J. Comput. Appli. Math. 168(1), 321–329 (2004).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. Popov, L. Tsonev, and D. Maystre, “Gratings—general properties in Littrow mount and energy flow distribution,” J. Mod. Opt. 37(3), 367–377 (1990).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Nature (1)

H. T. Liu and P. Lalanne, “Microscopic theory of extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Opt. Commun. (3)

E. Popov and L. Tsonev, “Electromagnetic field enhancement in deep metallic gratings,” Opt. Commun. 69(3), 193–198 (1989).
[Crossref]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[Crossref]

A. Wirgin and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Philos. Mag. (2)

O.M. Rayleigh Lord, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
[Crossref]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7,8), 163–182 (1944).
[Crossref]

Phys. Rev. B (1)

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28(4), 1870 (1983).
[Crossref]

Phys. Rev. Lett. (2)

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, “Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering,” Phys. Rev. Lett. 45(5), 355 (1980).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with Gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Prog. Electromag. Res. PIER (1)

A. A. Rizvi and C. H. Papas, “Power flow structures in two dimensional electromagnetic fields,” Prog. Electromag. Res. PIER 29, 261–294 (2000).
[Crossref]

Other (3)

D. Gray, American Institute of Physics Handbook, 2 (Mc Graw-Hill, 1963).

G. Granet, “Coordinate transformation method,” in Gratings: Theory and Numeric Applications, 2E. Popov, ed. (Aix-Marseille Université, 2014), Chap. 8.

E. Popov, “Light diffraction by relief gratings: a microscopic and macroscopic view,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1993) Vol. XXXI, pp. 139–187.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic representation of the simulated structures.
Fig. 2
Fig. 2 Norm (color map) and direction (black arrows) of the Poynting vector in the xz plane for an unperturbed flat metallic surface.
Fig. 3
Fig. 3 Norm of the total electric field (|E0| = 1 V.m1) 1 nm above the cone tip as a function of h for λ = 632:8 nm and θ = 5:86°.
Fig. 4
Fig. 4 Norm of the scattered electric field (colormap in V.m1) and direction of the scattered Poynting vector (black arrows) for two different cones, h=95 nm (a) and h=205 nm (b), in the plane y = 0 nm.
Fig. 5
Fig. 5 Norm of the scattered electric field (colormap in V.m1) and direction of the scattered Poynting vector (black arrows) for h = 205 nm in the plane x = 0 nm.
Fig. 6
Fig. 6 z-component of the real part of the scattered electric field Re(Ez) and numerical fit with Eq. (2).
Fig. 7
Fig. 7 Total Poynting vector for the two different cones, h = 95 nm (a) and h = 205 nm (b), in the xz-plane.
Fig. 8
Fig. 8 Grating efficiency of the reflected specular order as a function of the incident plane wave wavelength λ, ±10 nm around the wavelength of total absorption for θ = θp =5:86°, h = 205 nm and r = 247 nm, results obtained by the FEM and the C-method.
Fig. 9
Fig. 9 Grating efficiency of the reflected specular order as a function of the incident polar angle θ ∈ [0°,10°] for λ = 632.8 nm, h = 205 nm and r = 247 nm, results obtained by the FEM and the C-method.
Fig. 10
Fig. 10 Grating efficiency of the reflected specular order and norm of the total electric field 1 nm above the cone tips as a function of h for λ = 632.8 nm and θ = 5.86°.
Fig. 11
Fig. 11 Total electric field norm maps for two cones gratings of height h = 95 nm (a) and h = 205 nm (b), for λ = 632.8 nm and θ = 5.86° in the plane y = 0 nm for one cell of the gratings (colormap with a logarithmic scale).
Fig. 12
Fig. 12 Fourier decomposition (along x and y) of the total electric field vector for h = 95 nm (a) and h = 205 nm (b).
Fig. 13
Fig. 13 Total Poynting vector for two cones gratings of height h = 95 nm (a) and h = 205 nm (b) for λ = 632.8 nm and θ = 5.86° in the y = 0 nm plane.
Fig. 14
Fig. 14 Total Poynting vector for two cones gratings of height h = 95 nm (a) and h = 205 nm (b) for λ = 632.8 nm and θ = 5.86° in the x + y = 0 nm plane.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z , p l a s m o n ( x , z ) = H 1 + ( k x x ) exp ( i k z z ) .
Re [ E z , p l a s m o n ] z = 0 ( x ) = J 1 ( k x x ) exp ( k x x ) ,
R e ( α ) = λ / d sin ( θ p )

Metrics