Abstract

The spectral evolution of the degree of linear polarization (PL) at a scattering angle of 90° is studied numerically for high refractive index (HRI) dielectric spherical nanoparticles. The behaviour of PL(90°) is analysed as a function of the refractive index of the surrounding medium and the particle radius, and it is compared with the more conventional extinction efficiency parameter (Qext), usually used for sensing applications. We focus on the spectral region where both electric and magnetic resonances of order not higher than two are located for various semiconductor materials with low absorption. Although both Qext and PL(90°) are identifiers of the refractive index of the surrounding medium, the spectral of PL(90°) has only a small, linear dependence on nanoparticle size R. This weak dependence makes it experimentally feasible to perform real-time retrievals of both the refractive index of the external medium and the NP size R.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensing with magnetic dipolar resonances in semiconductor nanospheres

Braulio García-Cámara, Raquel Gómez-Medina, Juan José Sáenz, and Borja Sepúlveda
Opt. Express 21(20) 23007-23020 (2013)

Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays

Yan Hong and Björn M Reinhard
Opt. Mater. Express 4(11) 2409-2422 (2014)

Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann
Opt. Express 18(7) 7488-7496 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
    [Crossref]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  3. A. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
    [Crossref]
  4. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  5. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
    [Crossref] [PubMed]
  6. L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
    [Crossref] [PubMed]
  7. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  8. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
    [Crossref]
  9. J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
    [Crossref]
  10. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
    [Crossref] [PubMed]
  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  12. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
    [Crossref] [PubMed]
  13. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
    [Crossref] [PubMed]
  14. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
    [Crossref] [PubMed]
  15. B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett. 35(23), 4084–4086 (2010).
    [Crossref] [PubMed]
  16. B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
    [Crossref]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).
  19. J. M. Sanz, R. Alcaraz de la Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
    [Crossref] [PubMed]
  20. Y. Xia and N. J. Hallas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
    [Crossref]
  21. J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Polar decomposition of the mueller matrix: a polarimetric rule of thumb for square-profile surface structure recognition,” Appl. Opt. 50, 3781–3788 (2011).
    [Crossref] [PubMed]
  22. P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific Publishing, 1988).

2014 (2)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

J. M. Sanz, R. Alcaraz de la Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

2013 (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
[Crossref] [PubMed]

2012 (4)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

2011 (3)

2010 (3)

B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett. 35(23), 4084–4086 (2010).
[Crossref] [PubMed]

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

2005 (1)

Y. Xia and N. J. Hallas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

1988 (1)

A. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[Crossref]

Aizpurua, J.

Albella, P.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

Alcaraz de la Osa, R.

Barber, P. W.

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific Publishing, 1988).

Barreda, A. I.

Bloomer, I.

A. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Chang, R. K.

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific Publishing, 1988).

Chantada, L.

Chichkov, B. N.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Eyraud, C.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

Fenollosa, R.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Forouhi, A.

A. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[Crossref]

Froufe-Perez, L. S.

Froufe-Pérez, L.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

García-Cámara, B.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett. 35(23), 4084–4086 (2010).
[Crossref] [PubMed]

García-Etxarri, A.

Gefrin, J. M.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

Gómez-Medina, R.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

González, F.

J. M. Sanz, R. Alcaraz de la Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Polar decomposition of the mueller matrix: a polarimetric rule of thumb for square-profile surface structure recognition,” Appl. Opt. 50, 3781–3788 (2011).
[Crossref] [PubMed]

B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett. 35(23), 4084–4086 (2010).
[Crossref] [PubMed]

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

Hallas, N. J.

Y. Xia and N. J. Hallas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Harris, J. T.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Korgel, B. A.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

Litman, A.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

López, C.

Lu, X.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Meseguer, F.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

Moreno, F.

J. M. Sanz, R. Alcaraz de la Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Polar decomposition of the mueller matrix: a polarimetric rule of thumb for square-profile surface structure recognition,” Appl. Opt. 50, 3781–3788 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett. 35(23), 4084–4086 (2010).
[Crossref] [PubMed]

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

Nieto-Vesperinas, M.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Prasad, P. N.

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
[Crossref]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Rodriguez, I.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

Sáenz, J. J.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

Saiz, J. M.

Sanz, J. M.

Schatz, G.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Scheffold, F.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Sepúlveda, B.

Setién, B.

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

Shi, L.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Vaillon, R.

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

Xia, Y.

Y. Xia and N. J. Hallas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Nanophoton. (1)

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton..  5(1), 053512 (2011).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

MRS Bulletin (1)

Y. Xia and N. J. Hallas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Nano Lett. (1)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Nat. Commun. (4)

J. M. Gefrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun..  3, 1171 (2012).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun..  4, 1527 (2013).
[Crossref] [PubMed]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun..  4, 1904 (2013).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun..  5, 3402 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

B. Setién, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems,” New J. Phys..  12, 103031 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

A. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep..  2, 492 (2012).
[Crossref] [PubMed]

Other (4)

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific Publishing, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration for performing right-angle light-scattering measurements.
Fig. 2
Fig. 2 Spectral response of PL(90°) and Qext (mmed = 1) for a Si spherical NP (R = 200 nm). Resonances a1, b1 and b2 are labeled in the analysed spectrum. Refractive index values are taken from Ref. [17].
Fig. 3
Fig. 3 Left Column: Spectral pattern of PL (90°) (mmed = 1) for spherical R = 200 nm NPs of a) Ge, b) AlAs, c) AlSb and d) GaP. The a1, b1 and b2 resonance locations are labeled where they occur. Right Column: Real (n) and imaginary (k) parts of the refractive index of e) Ge, f) AlAs, g) AlSb and h) GaP. Values taken from Ref. [17].
Fig. 4
Fig. 4 Si spherical R = 200 nm NP: a) Spectral behaviour of PL(90°) as a function of λ (resonances a1, b1 and b2 are labeled), and b) Resonance spectral position (λres) as a function of mmed.
Fig. 5
Fig. 5 a) Values of PL(90°) for a Si spherical R = 200 nm NP on resonance as a function of mmed. b) PL(90°) sensitivity (Sm(90°)) to mmed (mmed ∈ [1, 2]) at resonances for the selected materials (particle radius R = 200 nm).
Fig. 6
Fig. 6 Spectral evolution of PL (90°) for a Si spherical mmed = 1.0 NP as a function of particle size R. The a1, b1 and b2 resonance locations are labeled.
Fig. 7
Fig. 7 Spectral evolution of the values of local maxima and minima in a) PL(90°), and b) Qext, as a function of the particle size R at resonance locations for a spherical Si NP with mmed = 1.0.
Fig. 8
Fig. 8 Spectral displacement of the local maximum or minimum in PL (90°) for a Si spherical NP (mmed = 1.0) as a function of the particle size (R).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Q e x t = 2 x 2 n = 1 ( 2 n + 1 ) R e { a n + b n } Q s c a = 2 x 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) ,
( E p ( θ ) E s ( θ ) ) s c a ( S 2 ( θ ) 0 0 S 1 ( θ ) ) ( E p E s ) i n c ,
S 1 ( θ ) = n = 1 ( 2 n + 1 ) n ( n + 1 ) ( a n π n ( θ ) + b n τ n ( θ ) ) S 2 ( θ ) = n = 1 ( 2 n + 1 ) n ( n + 1 ) ( a n τ n ( θ ) + b n π n ( θ ) ) ,
P L ( θ ) = I s ( θ ) I p ( θ ) I s ( θ ) + I p ( θ )
P L ( 90 ° ) = 9 | a 1 | 2 + 25 | b 2 | 2 + 30 R e { b 1 a 2 * } 9 | b 1 | 2 25 | a 2 | 2 30 R e { a 1 b 2 * } 9 | a 1 | 2 + 25 | b 2 | 2 + 30 R e { b 1 a 2 * } + 9 | b 1 | 2 + 25 | a 2 | 2 + 30 R e { a 1 b 2 * }
S m ( 90 ° ) = | ( δ P L ( 90 ° ) δ m m e d ) λ r e s |
S R ( 90 ° ) = | ( δ P L ( 90 ° ) δ R ) λ r e s |

Metrics