Abstract

Mode area scaling of optical fiber is highly desirable for high power fiber laser applications. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of ~2650µm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. To our knowledge, this is the best higher-order-mode suppression ever found in fibers with this large effective mode areas. We have also experimentally validated one of the designs. M2<1.08 across the transmission band was demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers

Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong
Opt. Express 22(11) 13962-13968 (2014)

Mode area scaling with all-solid photonic bandgap fibers

Fanting Kong, Kunimasa Saitoh, Devon Mcclane, Thomas Hawkins, Paul Foy, Guancheng Gu, and Liang Dong
Opt. Express 20(24) 26363-26372 (2012)

Extending single mode performance of all-solid large-mode-area single trench fiber

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu
Opt. Express 22(25) 31078-31091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49(25), F71–F78 (2010).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  3. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [Crossref] [PubMed]
  5. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  6. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  7. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  8. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [Crossref] [PubMed]
  9. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [Crossref] [PubMed]
  10. L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [Crossref]
  11. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [Crossref] [PubMed]
  12. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [Crossref] [PubMed]
  13. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
    [Crossref] [PubMed]
  14. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [Crossref] [PubMed]
  15. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2,” Opt. Lett. 37(8), 1292–1294 (2012).
    [Crossref] [PubMed]
  16. S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo, and L. Dong, “Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications,” J. Lightwave Technol. 32(3), 440–449 (2014).
    [Crossref]
  17. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
    [Crossref] [PubMed]
  18. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  19. J. Fini, “Design of Solid and Microstructure Fibers for Suppression of Higher-Order Modes,” Opt. Express 13(9), 3477–3490 (2005).
    [Crossref] [PubMed]
  20. X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19(27), 26515–26528 (2011).
    [Crossref] [PubMed]
  21. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
    [Crossref] [PubMed]
  22. J. M. Fini, B. Mangan, L. Meng, E. M. Monberg, J. W. Nicholson, and R. S. Windeler, “37-cell hollow-core-fiber designs with improved single-modedness,” in CLEO: 2014 (OSA, 2014), p. SM1N.2.
  23. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
    [Crossref] [PubMed]
  24. A. Baz, L. Bigot, G. Bouwmans, and Y. Quiquempois, “Single-Mode, Large Mode Area, Solid-Core Photonic BandGap Fiber With Hetero-Structured Cladding,” J. Lightwave Technol. 31(5), 830–835 (2013).
    [Crossref]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chaptman and Hall Ltd, 1983).
  26. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
    [Crossref]
  27. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
    [Crossref] [PubMed]
  28. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Quantitative mode quality characterization of fibers with extremely large mode areas by matched white-light interferometry,” Opt. Express 22(12), 14657–14665 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (5)

2012 (3)

2011 (6)

2010 (3)

2009 (3)

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

Andersen, T. V.

Barankov, R. A.

Baz, A.

Bigot, L.

Bouwmans, G.

Broeng, J.

Chang, G.

Cheung, E.

Clarkson, W. A.

Desantolo, A.

DiMarcello, F. V.

Dong, L.

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo, and L. Dong, “Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications,” J. Lightwave Technol. 32(3), 440–449 (2014).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Quantitative mode quality characterization of fibers with extremely large mode areas by matched white-light interferometry,” Opt. Express 22(12), 14657–14665 (2014).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[Crossref] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Dunn, C.

Eidam, T.

Ermeneux, S.

Fermann, M. E.

Fini, J.

Fini, J. M.

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Foy, P.

Fu, L.

Fujimaki, M.

Gabler, T.

Galvanauskas, A.

Gu, G.

Hanf, S.

Hawkins, T.

Hawkins, T. W.

Iliew, R.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Jones, M.

Kalichevsky-Dong, M. T.

Kashiwagi, M.

Kong, F.

Koshiba, M.

Lederer, F.

Li, J.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Limpert, J.

Liu, C. H.

Ma, X.

Mangan, B.

Marcinkevicius, A.

Matsuo, S.

Mcclane, D.

McKay, H.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

McKay, H. A.

Meng, L.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Monberg, E. M.

Murao, T.

Nicholson, J. W.

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Nilsson, J.

Nolte, S.

Ohta, M.

Otto, H. J.

Palese, S. P.

Parsons, J.

Petersson, A.

Quiquempois, Y.

Ramachandran, S.

Richardson, D. J.

Röser, F.

Rothhardt, J.

Saitoh, K.

Saitoh, S.

Salin, F.

Samson, B.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Steinmetz, A.

Stutzki, F.

Suzuki, S.

Takenaga, K.

Tanigawa, S.

Tunnermann, T.

Tünnermann, A.

Vienne, G.

Wei, K.

Windeler, R. S.

Winful, H. G.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Wirth, C.

Wu, T.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Yvernault, P.

Zellmer, H.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (17)

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
[Crossref] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
[Crossref] [PubMed]

J. Fini, “Design of Solid and Microstructure Fibers for Suppression of Higher-Order Modes,” Opt. Express 13(9), 3477–3490 (2005).
[Crossref] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[Crossref] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19(27), 26515–26528 (2011).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Quantitative mode quality characterization of fibers with extremely large mode areas by matched white-light interferometry,” Opt. Express 22(12), 14657–14665 (2014).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (2)

J. M. Fini, B. Mangan, L. Meng, E. M. Monberg, J. W. Nicholson, and R. S. Windeler, “37-cell hollow-core-fiber designs with improved single-modedness,” in CLEO: 2014 (OSA, 2014), p. SM1N.2.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chaptman and Hall Ltd, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Required core diameter ratio (ρcm) for maximum resonant coupling between the fundamental mode of the cladding core and one of the higher-order modes of the main core versus normalized frequency (V value) of the main core.
Fig. 2
Fig. 2 Cross-section of PBFs studied. From left to right are: mixed-cell, three-cell and two-cell AS-PBF.
Fig. 3
Fig. 3 Cross-section of the fabricated mixed-cell PBF.
Fig. 4
Fig. 4 Simulated loss of LP01 (blue) and LP11 modes (Orange and Green) in (a) mixed-cell design, (b) two-cell design and (c) three-cell design. The insets show the layout of different cladding arrangement. The arrow in the inset indicates the coil center. Insets also show the mode patterns of LP01 and LP11.
Fig. 5
Fig. 5 Normalized Transmission of 4m of the fabricated PBF.
Fig. 6
Fig. 6 Estimated effective mode area (EMA) of the fabricate PBF. The coil diameter is in log scale. The insets are mode patterns under different coil diameters. At 1m bending diameter, the EMA is estimated to be ~1842µm2, shown as the orange diamond in the chart. The dash line indicates the EMA of a straight fiber.
Fig. 7
Fig. 7 Near filed mode pattern of the mixed-cell PBF at various wavelengths. Δ is the distance of the launch offset.
Fig. 8
Fig. 8 Beam quality measurement at wavelength of 1013nm, 1018nm and 1024nm. Both x-axis (blue) and y-axis (green) were measured with selected mode profiles along the curve.

Tables (2)

Tables Icon

Table 1 Summary of loss ratio for three types of fiber design

Tables Icon

Table 2 Dimensions of Fabricated hetero-structured PBF

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β m 2 = k 2 n b 2 U m 2 ρ m 2
β c 2 = k 2 n b 2 U c 2 ρ c 2
U m ρ m = U c ρ c
U m V m = U c V c

Metrics