Abstract

A multi-wavelength interferometer utilizing the frequency comb of a femtosecond laser as the wavelength ruler is tested for its capability of ultra-precision positioning for machine axis control. The interferometer uses four different wavelengths phase-locked to the frequency comb and then determines the absolute position through a multi-channel scheme of detecting interference phases in parallel so as to enable fast, precise and stable measurements continuously over a few meters of axis-travel. Test results show that the proposed interferometer proves itself as a potential candidate of absolute-type position transducer needed for next-generation ultra-precision machine axis control, demonstrating linear errors of less than 61.9 nm in peak-to-valley over a 1-meter travel with an update rate of 100 Hz when compared to an incremental-type He-Ne laser interferometer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces

Sangwon Hyun, Minah Choi, Byung Jae Chun, Seungman Kim, Seung-Woo Kim, and Young-Jin Kim
Opt. Express 21(8) 9780-9791 (2013)

Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Petr Balling, and Xinghua Qu
Appl. Opt. 55(15) 4210-4218 (2016)

Frequency-comb-referenced multi-channel fiber laser for DWDM communication

Byung Jae Chun, Sangwon Hyun, Seungman Kim, Seung-Woo Kim, and Young-Jin Kim
Opt. Express 21(24) 29179-29185 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
    [Crossref]
  2. A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
    [Crossref]
  3. E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
    [Crossref]
  4. M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35(24), 4202–4204 (2010).
    [Crossref] [PubMed]
  5. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
    [Crossref]
  6. C. C. Williams and H. K. Wickramasinghe, “Absolute optical ranging with 200-nm resolution,” Opt. Lett. 14(11), 542–544 (1989).
    [Crossref] [PubMed]
  7. E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute-distance measurements,” Opt. Lett. 19(3), 213–215 (1994).
    [Crossref] [PubMed]
  8. P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
    [Crossref]
  9. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  10. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  12. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [Crossref] [PubMed]
  13. Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
    [Crossref]
  14. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  15. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  16. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  17. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
    [Crossref] [PubMed]
  18. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [Crossref] [PubMed]
  19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  20. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [Crossref]
  21. S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
    [Crossref]
  22. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  23. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  24. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  25. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  26. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  27. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [Crossref] [PubMed]
  28. B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
    [Crossref] [PubMed]
  29. Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
    [Crossref] [PubMed]
  30. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  31. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
    [Crossref] [PubMed]

2014 (1)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

2013 (3)

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

2012 (3)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
[Crossref]

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35(24), 4202–4204 (2010).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

2009 (5)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (3)

2004 (1)

2003 (1)

2001 (1)

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

2000 (1)

1996 (1)

1994 (1)

1993 (1)

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

1989 (1)

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Berkovic, G.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Bobroff, N.

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

Chun, B. J.

Ciddor, P. E.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cui, M.

Dändliker, R.

de Groot, P. J.

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

Docchio, F.

Fleming, A. J.

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

Füß, R.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Gelmini, E.

Gray, M. B.

Han, S.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Hausotte, T.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Herrmann, J.

Holzwarth, R.

Hsu, M. T. L.

Hussein, H.

Hyun, S.

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Jäger, G.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Jang, Y.-S.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Jones, J. D. C.

Joo, K.-N.

Kang, C.-S.

Kim, S.

Kim, S.-W.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kim, Y.

Kim, Y.-J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Le Floch, S.

Lee, J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lévêque, S.

Littler, I. C. M.

Manske, E.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Matsumoto, H.

Minoni, U.

Minoshima, K.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Salvadé, Y.

Schuhler, N.

Shaddock, D. A.

Shafir, E.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takahashi, S.

Takamasu, K.

Towers, C. E.

Towers, D. P.

Urbach, H. P.

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Warrington, R. B.

Wei, D.

Wickramasinghe, H. K.

Williams, C. C.

Ye, J.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Annals of CIRP (1)

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

Appl. Opt. (3)

Meas. Sci. Technol. (4)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Nat. Photonics (4)

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Opt. Eng. (2)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

Opt. Express (8)

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multi-wavelength ADM interferometer configured in this investigation. ADM: absolute distance measurement, IDM: incremental distance measurement, LADM: target distance measured by ADM, LIDM: target distance measured by IDM, M: mirror, PBS: polarization beam splitter, MR: reference mirror, BS: beam splitter, C: collimator, Ref. beam: reference beam, Mea. beam: measurement beam, DM: dichroic mirror, R: retro-reflector, Rb clock: rubidium atomic clock, OLE: optical linear encoder.

Fig. 2
Fig. 2

Multi-channel phase detection scheme. (a) Optical and electronic layout for wavelength de-multiplexing and phase detection. (b) Time counting and synchronization for simultaneous phase detection with reference to the Rb clock. FBGA: fiber Bragg grating array, BPF: band-pass filter, C: analog signal comparator, DAQ: digital data acquisition, PD: photo-detector, CLK: clock signal.

Fig. 3
Fig. 3

Performance evaluation of multi-channel phase detection. (a) Phase-detection linearity at each channel. (b) Time traces of measured phases at a sampling rate of 100 Hz.

Fig. 4
Fig. 4

Four wavelengths generated by phase-locked loop (PLL) control to frequency comb. (a) Wavelength positions measured by an optical spectrum analyzer over a 40-nm spectral bandwidth. (b) Frequency stability in Allan deviation.

Fig. 5
Fig. 5

Linearity comparison of the ADM interferometer with the IDM HeNe interferometer over a 1 m axis travel during a 1 min. The residual is the confidence level of ± 2σ.

Fig. 6
Fig. 6

Comparative distance measurement between ADM and IDM under optical chopping in beam path of ADM. (a) Distance measurements under chopper operation. (b) A magnified view over 5 seconds.

Fig. 7
Fig. 7

comparative test over 400 seconds at an ADM target distance of ~3.8 m. (a) Raw ADM and IDM readings at an update rate of 100 Hz and moving-averaged over 100 samples at an update rate of 1 s. The vertical offset between ADM and IDM reading is given for clarity. (b) Stability analysis using Allan deviation. (c) Frequency domain analysis using Fourier transform.

Fig. 8
Fig. 8

24 hour Long-term comparative test results. (a) Time-traces of ADM with IDM readings. (b) Difference of ADM and IDM readings. The maximum difference is ~1.34 μm or 3.5 × 10−7 in fractional term. The peak-to-valley value of the linear-fitted residual is 118 nm or 3.1 × 10−8 in fractional term. (c) Variations of air temperature and stage surface temperature. (d) Air refractive indices for ADM and IDM reading determined by the Ciddor’s equation.

Metrics