Abstract

A multi-wavelength interferometer utilizing the frequency comb of a femtosecond laser as the wavelength ruler is tested for its capability of ultra-precision positioning for machine axis control. The interferometer uses four different wavelengths phase-locked to the frequency comb and then determines the absolute position through a multi-channel scheme of detecting interference phases in parallel so as to enable fast, precise and stable measurements continuously over a few meters of axis-travel. Test results show that the proposed interferometer proves itself as a potential candidate of absolute-type position transducer needed for next-generation ultra-precision machine axis control, demonstrating linear errors of less than 61.9 nm in peak-to-valley over a 1-meter travel with an update rate of 100 Hz when compared to an incremental-type He-Ne laser interferometer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry

Shihua Zhang, Zheyi Xu, Benyong Chen, Liping Yan, and Jiandong Xie
Opt. Express 26(7) 9273-9284 (2018)

Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces

Sangwon Hyun, Minah Choi, Byung Jae Chun, Seungman Kim, Seung-Woo Kim, and Young-Jin Kim
Opt. Express 21(8) 9780-9791 (2013)

Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Petr Balling, and Xinghua Qu
Appl. Opt. 55(15) 4210-4218 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
    [Crossref]
  2. A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
    [Crossref]
  3. E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
    [Crossref]
  4. M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35(24), 4202–4204 (2010).
    [Crossref] [PubMed]
  5. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
    [Crossref]
  6. C. C. Williams and H. K. Wickramasinghe, “Absolute optical ranging with 200-nm resolution,” Opt. Lett. 14(11), 542–544 (1989).
    [Crossref] [PubMed]
  7. E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute-distance measurements,” Opt. Lett. 19(3), 213–215 (1994).
    [Crossref] [PubMed]
  8. P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
    [Crossref]
  9. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  10. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  12. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [Crossref] [PubMed]
  13. Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
    [Crossref]
  14. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  15. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  16. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  17. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
    [Crossref] [PubMed]
  18. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [Crossref] [PubMed]
  19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  20. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [Crossref]
  21. S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
    [Crossref]
  22. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  23. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  24. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  25. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  26. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  27. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [Crossref] [PubMed]
  28. B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
    [Crossref] [PubMed]
  29. Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
    [Crossref] [PubMed]
  30. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  31. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
    [Crossref] [PubMed]

2014 (1)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

2013 (3)

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

2012 (3)

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
[Crossref]

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35(24), 4202–4204 (2010).
[Crossref] [PubMed]

2009 (5)

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (3)

2004 (1)

2003 (1)

2001 (1)

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

2000 (1)

1996 (1)

1994 (1)

1993 (1)

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

1989 (1)

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Berkovic, G.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Bobroff, N.

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

Chun, B. J.

Ciddor, P. E.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cui, M.

Dändliker, R.

de Groot, P. J.

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

Docchio, F.

Fleming, A. J.

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

Füß, R.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Gelmini, E.

Gray, M. B.

Han, S.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Hausotte, T.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Herrmann, J.

Holzwarth, R.

Hsu, M. T. L.

Hussein, H.

Hyun, S.

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

Jäger, G.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Jang, Y.-S.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Jones, J. D. C.

Joo, K.-N.

Kang, C.-S.

Kim, S.

Kim, S.-W.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

Kim, Y.

Kim, Y.-J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Le Floch, S.

Lee, J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lévêque, S.

Littler, I. C. M.

Manske, E.

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Matsumoto, H.

Minoni, U.

Minoshima, K.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Salvadé, Y.

Schuhler, N.

Shaddock, D. A.

Shafir, E.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takahashi, S.

Takamasu, K.

Towers, C. E.

Towers, D. P.

Urbach, H. P.

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Warrington, R. B.

Wei, D.

Wickramasinghe, H. K.

Williams, C. C.

Ye, J.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Annals of CIRP (1)

S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” Annals of CIRP 59(1), 555–558 (2010).
[Crossref]

Appl. Opt. (3)

Meas. Sci. Technol. (4)

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

E. Manske, G. Jäger, T. Hausotte, and R. Füß, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Nat. Photonics (4)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement using femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Opt. Eng. (2)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

P. J. de Groot, “Unusual techniques for absolute distance measurement,” Opt. Eng. 40(1), 28–32 (2001).
[Crossref]

Opt. Express (8)

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

B. J. Chun, S. Hyun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-channel fiber laser for DWDM communication,” Opt. Express 21(24), 29179–29185 (2013).
[Crossref] [PubMed]

Y.-J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S.-W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Multi-wavelength ADM interferometer configured in this investigation. ADM: absolute distance measurement, IDM: incremental distance measurement, LADM: target distance measured by ADM, LIDM: target distance measured by IDM, M: mirror, PBS: polarization beam splitter, MR: reference mirror, BS: beam splitter, C: collimator, Ref. beam: reference beam, Mea. beam: measurement beam, DM: dichroic mirror, R: retro-reflector, Rb clock: rubidium atomic clock, OLE: optical linear encoder.
Fig. 2
Fig. 2 Multi-channel phase detection scheme. (a) Optical and electronic layout for wavelength de-multiplexing and phase detection. (b) Time counting and synchronization for simultaneous phase detection with reference to the Rb clock. FBGA: fiber Bragg grating array, BPF: band-pass filter, C: analog signal comparator, DAQ: digital data acquisition, PD: photo-detector, CLK: clock signal.
Fig. 3
Fig. 3 Performance evaluation of multi-channel phase detection. (a) Phase-detection linearity at each channel. (b) Time traces of measured phases at a sampling rate of 100 Hz.
Fig. 4
Fig. 4 Four wavelengths generated by phase-locked loop (PLL) control to frequency comb. (a) Wavelength positions measured by an optical spectrum analyzer over a 40-nm spectral bandwidth. (b) Frequency stability in Allan deviation.
Fig. 5
Fig. 5 Linearity comparison of the ADM interferometer with the IDM HeNe interferometer over a 1 m axis travel during a 1 min. The residual is the confidence level of ± 2σ.
Fig. 6
Fig. 6 Comparative distance measurement between ADM and IDM under optical chopping in beam path of ADM. (a) Distance measurements under chopper operation. (b) A magnified view over 5 seconds.
Fig. 7
Fig. 7 comparative test over 400 seconds at an ADM target distance of ~3.8 m. (a) Raw ADM and IDM readings at an update rate of 100 Hz and moving-averaged over 100 samples at an update rate of 1 s. The vertical offset between ADM and IDM reading is given for clarity. (b) Stability analysis using Allan deviation. (c) Frequency domain analysis using Fourier transform.
Fig. 8
Fig. 8 24 hour Long-term comparative test results. (a) Time-traces of ADM with IDM readings. (b) Difference of ADM and IDM readings. The maximum difference is ~1.34 μm or 3.5 × 10−7 in fractional term. The peak-to-valley value of the linear-fitted residual is 118 nm or 3.1 × 10−8 in fractional term. (c) Variations of air temperature and stage surface temperature. (d) Air refractive indices for ADM and IDM reading determined by the Ciddor’s equation.

Metrics