Abstract

Long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) operating at telecom wavelengths are efficiently (end-fire) interfaced with photonic waveguides by taking advantage of very similar lateral mode field profiles in these waveguide configurations. The LR-DLSPPWs are formed by 1-μm-high and 1-μm-wide polymer ridges fabricated atop 15-nm-thin and 500-nm-wide gold stripes supported by a 289-nm-thick ormoclear polymer deposited on a low-index (1.34) layer of cytop, whereas gold stripes are absent in the photonic waveguide configuration that is identical to the plasmonic one in all other respects. The coupling efficiency between LR-DLSPPWs and photonic waveguides is numerically estimated to be 97%, decreasing by only a few percents for non-centered gold stripes (as long as a gold stripe is kept inside the polymer ridge). The fabricated LR-DLSPPWs coupled to photonic waveguides are first characterized using amplitude- and phase-resolved near-field imaging of propagating radiation that reveals very similar mode field distributions in these waveguides as well as their efficient interfacing. The coupling efficiency is then experimentally characterized using the cutback approach resulting in an average level of 75% per interface, while the LR-DLSPPW mode propagation length is estimated to be on average 0.3 mm. Possible reasons for differences between experimental and simulation results are discussed, indicating that a 3-nm-thin titanium layer (used for improving adhesion between gold and ormoclear) introduces substantial mode absorption. The results obtained open new perspectives for realization of hybrid photonic-plasmonic components and circuits.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directional coupling in long-range dielectric-loaded plasmonic waveguides

Vladimir A. Zenin, Zhanghua Han, Valentyn S. Volkov, Kristjan Leosson, Ilya P. Radko, and Sergey I. Bozhevolnyi
Opt. Express 21(7) 8799-8807 (2013)

Long-range dielectric-loaded surface plasmon-polariton waveguides

Tobias Holmgaard, Jacek Gosciniak, and Sergey I. Bozhevolnyi
Opt. Express 18(22) 23009-23015 (2010)

Power monitoring in dielectric-loaded surface plasmon-polariton waveguides

Ashwani Kumar, Jacek Gosciniak, Thomas B. Andersen, Laurent Markey, Alain Dereux, and Sergey I. Bozhevolnyi
Opt. Express 19(4) 2972-2978 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  4. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
    [Crossref] [PubMed]
  5. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express 12, 5481–5486 (2004).
    [Crossref] [PubMed]
  6. O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
    [Crossref]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [Crossref] [PubMed]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
    [Crossref]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref] [PubMed]
  10. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [Crossref]
  11. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
    [Crossref] [PubMed]
  12. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
    [Crossref] [PubMed]
  13. S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
    [Crossref]
  14. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [Crossref]
  15. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
    [Crossref] [PubMed]
  16. X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
    [Crossref]
  17. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [Crossref] [PubMed]
  18. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
    [Crossref]
  19. J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
    [Crossref]
  20. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
    [Crossref] [PubMed]
  21. V. A. Zenin, Z. Han, V. S. Volkov, K. Leosson, I. P. Radko, and S. I. Bozhevolnyi, “Directional coupling in long-range dielectric-loaded plasmonic waveguides,” Opt. Express 21, 8799–8807 (2013).
    [Crossref] [PubMed]
  22. R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
    [Crossref] [PubMed]
  23. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [Crossref]
  24. G. I. Kweon and I. S. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightw. Technol. 17, 690–703 (1999).
    [Crossref]
  25. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
    [Crossref]
  27. A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
    [Crossref] [PubMed]
  28. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
    [Crossref]
  29. A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
    [Crossref]

2014 (2)

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref] [PubMed]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
[Crossref]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

2011 (2)

2010 (4)

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

2009 (2)

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

2007 (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[Crossref]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

2005 (4)

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

1999 (1)

G. I. Kweon and I. S. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightw. Technol. 17, 690–703 (1999).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aizpurua, J.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

Albrektsen, O.

Andersen, T. B.

Andryieuski, A.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

Apostolopoulos, D.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

Avramopoulos, H.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Baehr-Jones, T.

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Baus, M.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Berini, P.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Boltasseva, A.

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

Bozhevolnyi, S. I.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref] [PubMed]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

V. A. Zenin, Z. Han, V. S. Volkov, K. Leosson, I. P. Radko, and S. I. Bozhevolnyi, “Directional coupling in long-range dielectric-loaded plasmonic waveguides,” Opt. Express 21, 8799–8807 (2013).
[Crossref] [PubMed]

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
[Crossref]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dereux, A.

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
[Crossref]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Desiatov, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Garcia de Abajo, F. J.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

Garcia-Etxarri, A.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

Giannoulis, G.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Hassan, K.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

He, S.

Hillenbrand, R.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Hochberg, M.

Holmgaard, T.

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kalavrouziotis, D.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Karl, M.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Keshmiri, H.

Kjelstrup-Hansen, J.

Kriezis, E. E.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Kumar, A.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Kweon, G. I.

G. I. Kweon and I. S. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightw. Technol. 17, 690–703 (1999).
[Crossref]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Lalanne, P.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Lavrinenko, A. V.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

Leosson, K.

Levy, U.

Liu, L.

Ma, Y.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Malureanu, R.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

Markey, L.

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
[Crossref]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Mazurski, N.

Nielsen, M. G.

Nikolajsen, T.

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Palamaru, M.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

Papaioannou, S.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Park, I. S.

G. I. Kweon and I. S. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightw. Technol. 17, 690–703 (1999).
[Crossref]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Pitilakis, A.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Pleros, N.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[Crossref]

Radko, I. P.

Romero, I.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

Scherer, A.

Shi, X.

Søndergaard, T.

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

Tekin, T.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Tsilipakos, O.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Volkov, V. S.

Vyrsokinos, K.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Walker, C.

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

Wang, Z.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

Weeber, J.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Yan, M.

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Yioultsis, T. V.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Zektzer, R.

Zenin, V. A.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

V. A. Zenin, Z. Han, V. S. Volkov, K. Leosson, I. P. Radko, and S. I. Bozhevolnyi, “Directional coupling in long-range dielectric-loaded plasmonic waveguides,” Opt. Express 21, 8799–8807 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron. 48, 678–687 (2012).
[Crossref]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

J. Lightw. Technol. (1)

G. I. Kweon and I. S. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightw. Technol. 17, 690–703 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[Crossref] [PubMed]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250, 328–333 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (3)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79, 125439 (2009).
[Crossref]

Sci. Rep. (1)

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic cross section of a straight LR-DLSPPW with a PMMA ridge atop a gold stripe supported by ormoclear and cytop films deposited on a silicon wafer. Field distributions of dominating electric field component |Ey| in fundamental mode TM00 at 1550 nm (b) in the LR-DLSPPW and (c) in the photonic waveguide (which has the exact same configuration as in (b) except without the gold stripe).
Fig. 2
Fig. 2 Dependence of (a) propagation length and (b) coupling efficiency on gold stripe displacement for different gold stripe thicknesses of 10–20 nm. The curves in (b) share the same legend as in (a). Inset in (b) shows field distribution of Ey with the gold stripe displacement of 250 nm and gold thickness of 16 nm. (c) Influence of titanium intermediate layer on propagation length of LR-DLSPP mode as a function of gold stripe thickness.
Fig. 3
Fig. 3 (a) Schematic demonstration of the implementation of 45-degree mirror in transmission-mode s-SNOM setup. (b) Top view of the waveguide and shifted SNOM-probe under excitation with red probe beam. Off-side trench reflects the position of the gold stripe in the waveguide. (c) Pseudocolour s-SNOM images of topography and complex-valued near-field at = 1500 nm (represented in terms of amplitude, phase, and real part). The propagation direction of the mode is illustrated with arrow. (d) One-dimensional Fourier transformation of near-field map, used for evaluation of effective mode index and back reflection.
Fig. 4
Fig. 4 (a) Schematic illustration and (b) photo of the experimental setup for measuring the transmission through the waveguides. (c) Top-view optical microscope image of the cleaved waveguides and the aligned tapered-lensed fiber. (d) Top-view optical microscope image of the uncleaved sample, including four waveguides with different lengths of embedded gold stripe, with grooves outside of the waveguides reflecting the length and position of gold stripes. Inset presents the scanning electron microscope image of the grating in the end of the waveguides.
Fig. 5
Fig. 5 (a) Measured transmission of the four waveguides after averaging all the results from four samples. WG1 is the waveguide without gold stripe. WG2, WG3 and WG4 stand for the waveguides with the gold stripe length of 50, 150 and 200 μm, respectively. (b) Propagation length and coupling loss as a function of the wavelength. Error bar in both figures shows the standard deviation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| A E 1 × H 2 z ^ d x d y | | A E 2 × H 1 z ^ d x d y | | A E 1 × H 1 z ^ d x d y | | A E 2 × H 2 z ^ d x d y |
T = C com ( C pl ph ) n exp ( L stripe L prop )

Metrics