Abstract

Double-clad fibers (DCF) have many advantages in fibered confocal microscopes as they allow for coherent illumination through their core and partially coherent detection through their inner cladding. We report a double-clad fiber coupler (DCFC) made from small inner cladding DCF that preserves optical sectioning in confocal microscopy while increasing collection efficiency and reducing coherent effects. Due to the small inner cladding, previously demonstrated fabrication methods could not be translated to this coupler’s fabrication. To make such a coupler possible, we introduce in this article three new design concepts. The resulting DCFC fabricated using two custom fibers and a modified fusion-tapering technique achieves high multimodal extraction (≥70 %) and high single mode transmission (≥80 %). Its application to reflectance confocal microscopy showed a 30-fold increase in detected signal intensity, a 4-fold speckle contrast reduction with a penalty in axial resolution of a factor 2. This coupler paves the way towards more efficient confocal microscopes for clinical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-clad fiber coupler for endoscopy

Simon Lemire-Renaud, Maxime Rivard, Mathias Strupler, Dominic Morneau, Frédéric Verpillat, Xavier Daxhelet, Nicolas Godbout, and Caroline Boudoux
Opt. Express 18(10) 9755-9764 (2010)

Double-clad fiber with a tapered end for confocal endomicroscopy

Simon Lemire-Renaud, Mathias Strupler, Fouzi Benboujja, Nicolas Godbout, and Caroline Boudoux
Biomed. Opt. Express 2(11) 2961-2972 (2011)

Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

Kathy Beaudette, Hyoung Won Baac, Wendy-Julie Madore, Martin Villiger, Nicolas Godbout, Brett E. Bouma, and Caroline Boudoux
Biomed. Opt. Express 6(4) 1293-1303 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29, 2408–2410 (2004).
    [Crossref] [PubMed]
  2. C. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (2010).
    [Crossref]
  3. R. Juskaitis and T. Wilson, “Differential confocal scanning microscope with a two-mode optical fiber,” Appl. Opt. 31, 898–902 (1992).
    [Crossref] [PubMed]
  4. T. Wilson and a. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227 (1987).
    [Crossref] [PubMed]
  5. C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt. 17, 085001 (2012).
    [Crossref] [PubMed]
  6. M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
    [Crossref] [PubMed]
  7. G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
    [PubMed]
  8. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [Crossref] [PubMed]
  9. A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
    [Crossref]
  10. L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
    [Crossref]
  11. V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
    [Crossref] [PubMed]
  12. V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
    [Crossref] [PubMed]
  13. H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
    [Crossref] [PubMed]
  14. R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
    [Crossref] [PubMed]
  15. N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” J. Gastroen. Hepatol. 23, 1483–1491 (2008).
    [Crossref]
  16. P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
    [Crossref]
  17. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
    [Crossref] [PubMed]
  18. F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
    [Crossref]
  19. C. Boudoux, “Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications,” Ph.D. thesis, Massachusetts Institute of Technology (2007).
  20. D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy.,” Biomed. Opt. Express 4, 1925–1936 (2013).
    [Crossref]
  21. S. Lemire-Renaud, M. Strupler, F. Benboujja, N. Godbout, and C. Boudoux, “Double-clad fiber with a tapered end for confocal endomicroscopy,” Biomed. Opt. Express 2, 2961–2972 (2011).
    [Crossref] [PubMed]
  22. D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. a. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38, 266–268 (2013).
    [Crossref] [PubMed]
  23. H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
    [Crossref] [PubMed]
  24. S.-Y. Ryu, H.-Y. Choi, M.-J. Ju, J.-H. Na, W.-J. Choi, and B.-H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13, 310–315 (2009).
    [Crossref]
  25. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K.-T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681–17689 (2007).
    [Crossref] [PubMed]
  26. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18, 9755–9764 (2010).
    [Crossref] [PubMed]
  27. H. Bao, S. Y. Ryu, B. H. Lee, W. Tao, and M. Gu, “Nonlinear endomicroscopy using a double-clad fiber coupler,” Opt. Lett. 35, 995–997 (2010).
    [Crossref] [PubMed]
  28. W.-J. Madore, E. De Montigny, O. Ouellette, S. Lemire-Renaud, M. Leduc, X. Daxhelet, N. Godbout, and C. Boudoux, “Asymmetric double-clad fiber couplers for endoscopy,” Opt. Lett. 38, 4514–4517 (2013).
    [Crossref] [PubMed]
  29. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  30. S. Lacroix, N. Godbout, and X. Daxhelet, Optical Fiber Components : Design and Applications (Research Signpost, 2006).
  31. J. Bures, Guided Optics : Optical Fibers and Fiber Components (John Wiley and Sons, 2009).
  32. J. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts and Co., 2007).
  33. D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
    [PubMed]
  34. E. Barhoum, R. Johnston, and E. Seibel, “Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection,” Opt. Express 13, 7548–7562 (2005).
    [Crossref] [PubMed]
  35. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Express 14, 8604 (2006).
    [Crossref] [PubMed]
  36. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13, 8214–8221 (2005).
    [Crossref] [PubMed]
  37. H. Pahlevaninezhad, A. M. D. Lee, T. Shaipanich, R. Raizada, L. Cahill, G. Hohert, V. X. D. Yang, S. Lam, C. MacAulay, and P. Lane, “A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography,” Biomed. Opt. Express 5, 2978–2987 (2014).
    [Crossref] [PubMed]
  38. A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18, 14745–14751 (2010).
    [Crossref] [PubMed]

2014 (2)

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

H. Pahlevaninezhad, A. M. D. Lee, T. Shaipanich, R. Raizada, L. Cahill, G. Hohert, V. X. D. Yang, S. Lam, C. MacAulay, and P. Lane, “A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography,” Biomed. Opt. Express 5, 2978–2987 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt. 17, 085001 (2012).
[Crossref] [PubMed]

2011 (4)

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

S. Lemire-Renaud, M. Strupler, F. Benboujja, N. Godbout, and C. Boudoux, “Double-clad fiber with a tapered end for confocal endomicroscopy,” Biomed. Opt. Express 2, 2961–2972 (2011).
[Crossref] [PubMed]

2010 (7)

H. Bao, S. Y. Ryu, B. H. Lee, W. Tao, and M. Gu, “Nonlinear endomicroscopy using a double-clad fiber coupler,” Opt. Lett. 35, 995–997 (2010).
[Crossref] [PubMed]

S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18, 9755–9764 (2010).
[Crossref] [PubMed]

A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18, 14745–14751 (2010).
[Crossref] [PubMed]

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

C. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (2010).
[Crossref]

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

2009 (2)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

S.-Y. Ryu, H.-Y. Choi, M.-J. Ju, J.-H. Na, W.-J. Choi, and B.-H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13, 310–315 (2009).
[Crossref]

2008 (1)

N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” J. Gastroen. Hepatol. 23, 1483–1491 (2008).
[Crossref]

2007 (2)

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K.-T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681–17689 (2007).
[Crossref] [PubMed]

2006 (2)

K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Express 14, 8604 (2006).
[Crossref] [PubMed]

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (2)

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29, 2408–2410 (2004).
[Crossref] [PubMed]

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

1999 (1)

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

1992 (2)

1987 (2)

Abramov, A.

Anderson, R. R.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Aslanian, H. R.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

Auger, M.

Avramidis, M.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Bao, H.

Barhoum, E.

Becker, V.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Benboujja, F.

Bindewald, A.

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Birks, T.

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Boudoux, C.

D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. a. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38, 266–268 (2013).
[Crossref] [PubMed]

W.-J. Madore, E. De Montigny, O. Ouellette, S. Lemire-Renaud, M. Leduc, X. Daxhelet, N. Godbout, and C. Boudoux, “Asymmetric double-clad fiber couplers for endoscopy,” Opt. Lett. 38, 4514–4517 (2013).
[Crossref] [PubMed]

S. Lemire-Renaud, M. Strupler, F. Benboujja, N. Godbout, and C. Boudoux, “Double-clad fiber with a tapered end for confocal endomicroscopy,” Biomed. Opt. Express 2, 2961–2972 (2011).
[Crossref] [PubMed]

S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18, 9755–9764 (2010).
[Crossref] [PubMed]

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13, 8214–8221 (2005).
[Crossref] [PubMed]

C. Boudoux, “Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications,” Ph.D. thesis, Massachusetts Institute of Technology (2007).

Bouma, B.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Bouma, B. E.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13, 8214–8221 (2005).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29, 2408–2410 (2004).
[Crossref] [PubMed]

Bourg-Heckly, G.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Brandt, J. D.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Bures, J.

J. Bures, Guided Optics : Optical Fibers and Fiber Components (John Wiley and Sons, 2009).

Cahill, L.

Carlini, a. R.

Carruth, R. W.

Choi, H. Y.

Choi, H.-Y.

Choi, W.-J.

Cioffi, G. A.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Coleman, A. L.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Dahlmann, A.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Daxhelet, X.

De Montigny, E.

Delori, F. C.

Dirkes, K.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Dominique, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Fockens, P.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Frieser, M.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Fuchs, F. S.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Galle, P. R.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Ganslmayer, M.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Glazowski, C.

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt. 17, 085001 (2012).
[Crossref] [PubMed]

Godbout, N.

Goetz, M.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

González, S.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Goodman, J.

J. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts and Co., 2007).

Gordon, M. O.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Gossner, L.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Gu, M.

Guitera, P.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Harris, M.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Hart, J.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

He, F.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Hildner, K.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Hoffman, A.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Hohert, G.

Holz, F. G.

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Hughes, G. W.

Iftimia, N. V.

Jaffer, F. a.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Jain, S.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Johnston, R.

Jorzik, J. J.

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Ju, M.-J.

Jung, M.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Jung, Y.

Juskaitis, R.

Kang, D.

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy.,” Biomed. Opt. Express 4, 1925–1936 (2013).
[Crossref]

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Kass, M. A.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Kho, K.-W.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Kiesslich, R.

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Kim, J. W.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Kim, K.-T.

Kim, M.

Kirk, R. W.

Konda, V. J. a.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

Lachkar, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Lacroix, S.

S. Lacroix, N. Godbout, and X. Daxhelet, Optical Fiber Components : Design and Applications (Research Signpost, 2006).

Lam, S.

Lane, P.

Lauwers, G.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Leduc, M.

Lee, A. M. D.

Lee, B. H.

Lee, B.-H.

Lee, D.

Lemire-Renaud, S.

Leong, R. W. L.

N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” J. Gastroen. Hepatol. 23, 1483–1491 (2008).
[Crossref]

Li, Y.

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Liebmann, J. M.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Loesch, A.

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Longo, C.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Lorenser, D.

MacAulay, C.

Madore, W.-J.

Maitland, K. C.

Mancer, K.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

McCarthy, J. R.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

McLaughlin, R. a.

Medeiros, F. A.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Meining, A.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Menzies, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Minai, L.

Mino-Kenudson, M.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Moreno-Swirc, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Morneau, D.

Morse, T.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Na, J.-H.

Nafe, B.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Namati, E.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Neumann, H.

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

Neurath, M. F.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Nguyen, N. Q.

N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” J. Gastroen. Hepatol. 23, 1483–1491 (2008).
[Crossref]

Nishioka,

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Nishioka, N.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Ntziachristos, V.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Oh, W. Y.

Olivo, M.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Ouellette, O.

Pahlevaninezhad, H.

Pellacani, G.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Piltz-Seymour, J. R.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Puricelli,

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Puricelli, W.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Quirk, B. C.

Ra, H.

Raimondo, M.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Raizada, R.

Rajadhyaksha, M.

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt. 17, 085001 (2012).
[Crossref] [PubMed]

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Richards-Kortum, R.

Rivard, M.

Ryu, S. Y.

Ryu, S.-Y.

Salaün, M.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Sampson, D. D.

Schlachter, S. C.

Schutt, F.

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Schwarz, S.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Seibel, E.

Seidenari, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

Shaipanich, T.

Sheppard, C.

C. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (2010).
[Crossref]

Shin, H. J.

Shishkov, M.

Shubochkin, R.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Siddiqui, U. D.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

Solgaard, O.

Soo, K.-C.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Stolte, M.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Strupler, M.

Suter, M.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Tabatabaei, N.

Tao, W.

Tearney, G.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Tearney, G. J.

Thiberville, L.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Thong, P. S.-P.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Trick, G. L.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Uder, M.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Verpillat, F.

Vever-Bizet, C.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Vieth, M.

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Voermans, R. P.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

von Delius, S.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Wallace, M. B.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Wang, L.

Waxman, I.

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

Webb, R. H.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
[Crossref] [PubMed]

Weinreb, R. N.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

White, W. M.

Wilson, T.

Woods, K.

Woodward, T. a.

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

Wu, T.

Yachimski, P.

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

Yang, V. X. D.

Yelin, D.

Yoo, H.

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Yun, S. H.

Zangwill, L. M.

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Zavislan, J. M.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Zheng, W.

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

Zirlik, S.

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Am. J. Ophtalmol. (1)

A. Bindewald, J. J. Jorzik, A. Loesch, F. Schutt, and F. G. Holz, “Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy,” Am. J. Ophtalmol. 137, 556–558 (2004).
[Crossref]

Am. J. Ophtamol. (1)

L. M. Zangwill, S. Jain, K. Dirkes, F. He, F. A. Medeiros, G. L. Trick, J. D. Brandt, G. A. Cioffi, A. L. Coleman, J. M. Liebmann, J. R. Piltz-Seymour, M. O. Gordon, M. A. Kass, and R. N. Weinreb, “The rate of structural change: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study,” Am. J. Ophtamol. 155, 971–982 (2013).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (3)

Clin. Gastroenterol. Hepatol. (1)

R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).
[Crossref] [PubMed]

Gastroenterology (1)

H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139, 388–392, (2010).
[Crossref] [PubMed]

Gastrointest. Endosc. (2)

V. Becker, M. B. Wallace, P. Fockens, S. von Delius, T. a. Woodward, M. Raimondo, R. P. Voermans, and A. Meining, “Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos),” Gastrointest. Endosc. 71, 1260–1266 (2010).
[Crossref] [PubMed]

V. J. a. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointest. Endosc. 74, 1049–1060 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt. 17, 085001 (2012).
[Crossref] [PubMed]

P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2014).
[Crossref]

J. Gastroen. Hepatol. (1)

N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” J. Gastroen. Hepatol. 23, 1483–1491 (2008).
[Crossref]

J. Invest. Dermatol. (2)

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759–2765 (2007).
[PubMed]

J. Lightwave Technol. (1)

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

J. Microsc. (1)

D. Kang, M. Suter, C. Boudoux, P. Yachimski, Nishioka, W. Puricelli, Puricelli, N. Nishioka, Nishioka, M. Mino-Kenudson, G. Lauwers, B. Bouma, and G. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc. 239, 87–91 (2010).
[PubMed]

J. Opt. Soc. Korea (1)

Nat. Med. (1)

H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. a. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med. 17, 1680–1684 (2011).
[Crossref] [PubMed]

Opt. Acta (1)

C. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Proceedings of the American Thoracic Society (1)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proceedings of the American Thoracic Society 6, 444–449 (2009).
[Crossref] [PubMed]

Respiration (1)

F. S. Fuchs, S. Zirlik, K. Hildner, M. Frieser, M. Ganslmayer, S. Schwarz, M. Uder, and M. F. Neurath, “Fluorescein-aided confocal laser endomicroscopy of the lung,” Respiration 81, 32–38 (2011).
[Crossref]

Other (4)

C. Boudoux, “Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications,” Ph.D. thesis, Massachusetts Institute of Technology (2007).

S. Lacroix, N. Godbout, and X. Daxhelet, Optical Fiber Components : Design and Applications (Research Signpost, 2006).

J. Bures, Guided Optics : Optical Fibers and Fiber Components (John Wiley and Sons, 2009).

J. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts and Co., 2007).

Supplementary Material (1)

» Media 1: MOV (3275 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of a small-ratio double-clad fiber coupler achieved by fusing a double-clad fiber (top) with a coreless multimode fiber (bottom). The core, inner cladding and outer cladding regions are shown in red, blue and white, respectively. The guiding region of the coreless fiber is shown in white and its guiding jacket is shown in green. (b) and (d) Cross-sections of the double-clad and multimode fibers, respectively. (c) Refractive index profile of the coupler’s central section.
Fig. 2
Fig. 2 (a) Schematic diagram of the tapered DCF with representations of the fundamental mode (red) and inner cladding modes (blue) at the beginning and in the center of the taper. (b) Effective refractive indices of the fundamental mode (solid line) and cladding modes (gray area) as they propagate in the DCF, transition section (TS) and constant section (CS), respectively.
Fig. 3
Fig. 3 Single mode transmission (blue curve) of the sDCFC, measured from Port 1 to Port 2. Multimode extraction (green curve) as measured from Port 2 to Port 3. Ports are defined on Fig. 1
Fig. 4
Fig. 4 Diagram of the laser scanning confocal microscopy setup using the sDCFC. In this setup, the sDCFC inner cladding is used as the spatial filter for confocal detection. Coll: Collimator, PD: Photodetector, BD: Beam dump, G: Galvanometer-mounted mirrors, Tel: Telescope, Obj: Microscope objective.
Fig. 5
Fig. 5 Coherent (left column) and partially coherent (right column) detection images of swine thyroid tissue. (c) and (d) respectively show coherent and partially coherent detection magnified views of the top inset taken from (a) and (b). Arrows show a structure whose texture changes with the reduction of speckle contrast. (e) and (f) respectively show magnified views of the bottom inset in (a) and (b). Arrows point to bright spots that are still visible when speckle contrast is decreased. Scale bar is 100 μm. Intensity colorbars are in arbitrary units.
Fig. 6
Fig. 6 Coherent (left column) and partially coherent (right column) detection images of swine muscular tissue taken at 72 μm deep measured from the tissue surface. A movie shows the confocal images as depth increases from 15 μm to 105 μm ( Media 1). Scale bar is 100 μm.

Metrics