Abstract

The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch’s membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images

Jing Tian, Pina Marziliano, Mani Baskaran, Tin Aung Tun, and Tin Aung
Biomed. Opt. Express 4(3) 397-411 (2013)

Semi-automatic geographic atrophy segmentation for SD-OCT images

Qiang Chen, Luis de Sisternes, Theodore Leng, Luoluo Zheng, Lauren Kutzscher, and Daniel L. Rubin
Biomed. Opt. Express 4(12) 2729-2750 (2013)

Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

Vedran Kajić, Marieh Esmaeelpour, Boris Považay, David Marshall, Paul L. Rosin, and Wolfgang Drexler
Biomed. Opt. Express 3(1) 86-103 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
    [Crossref] [PubMed]
  2. Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
    [Crossref] [PubMed]
  3. M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
    [Crossref] [PubMed]
  4. R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol. 147(5), 801–810 (2009).
    [Crossref] [PubMed]
  5. V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
    [Crossref] [PubMed]
  6. I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
    [Crossref] [PubMed]
  7. R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
    [Crossref] [PubMed]
  8. H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
    [Crossref] [PubMed]
  9. C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
    [Crossref] [PubMed]
  10. T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
    [Crossref] [PubMed]
  11. L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
    [Crossref] [PubMed]
  12. J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
    [Crossref] [PubMed]
  13. L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
    [Crossref] [PubMed]
  14. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
    [Crossref] [PubMed]
  15. S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
    [Crossref] [PubMed]
  16. S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
    [Crossref] [PubMed]
  17. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
    [Crossref] [PubMed]
  18. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
    [Crossref] [PubMed]
  19. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  20. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
    [Crossref] [PubMed]
  21. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
    [Crossref] [PubMed]
  22. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
    [Crossref] [PubMed]
  23. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
    [Crossref] [PubMed]
  24. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
    [Crossref] [PubMed]
  25. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
    [Crossref] [PubMed]
  26. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20(3), 3353–3366 (2012).
    [Crossref] [PubMed]
  27. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
    [Crossref] [PubMed]
  28. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
    [Crossref] [PubMed]
  29. Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
    [Crossref] [PubMed]
  30. H. Danesh, R. Kafieh, H. Rabbani, and F. Hajizadeh, “Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts,” Comput.Math. Method. M. 2014, 2014.
  31. Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
    [Crossref] [PubMed]
  32. D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
    [Crossref] [PubMed]
  33. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
    [Crossref]
  34. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004).
    [Crossref] [PubMed]
  35. Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
    [Crossref] [PubMed]
  36. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
    [Crossref] [PubMed]

2013 (12)

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
[Crossref] [PubMed]

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

2012 (8)

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
[Crossref] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20(3), 3353–3366 (2012).
[Crossref] [PubMed]

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
[Crossref] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

2011 (3)

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

2010 (3)

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

2009 (3)

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol. 147(5), 801–810 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

2008 (1)

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

2006 (1)

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

2004 (1)

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004).
[Crossref] [PubMed]

2001 (1)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

1997 (1)

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

1959 (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Abdillahi, H.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Abràmoff, M. D.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Albiani, D. A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Alonso-Caneiro, D.

Aung, T.

Bai, J.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

Barteselli, G.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Bartsch, D. U.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Baskaran, M.

Baumann, B.

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

Beaumont, P.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Beg, M. F.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Bonesi, M.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Boykov, Y.

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004).
[Crossref] [PubMed]

Branchini, L.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

Brugnoni, N.

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

Buatti, J. M.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Cabrera, M. T.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Calabresi, P. A.

Carass, A.

Ceklic, L.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Chen, C. X.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Chen, D. Z.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Cheng, L.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Chhablani, J.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Chiu, S. J.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Collins, M. J.

De Dzanet, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

De Salvo, G.

M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
[Crossref] [PubMed]

de Sisternes, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Dijkstra, E. W.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Doede, A. L.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Drexler, W.

Du, K. F.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Duan, L.

Dufour, P. A.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Duker, J. S.

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Egan, C. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

El-Emam, S.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Esmaeelpour, M.

Fallah, N.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Farsiu, S.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Flores-Moreno, I.

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

Forooghian, F.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Freedman, S. F.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Freeman, W. R.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Fruttiger, M.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Fujiwara, T.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Fung, S.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Garvin, M. K.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Gemenetzi, M.

M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
[Crossref] [PubMed]

Götzinger, E.

Ham, D. I.

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Hamarneh, G.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

Hauser, M.

Hitzenberger, C. K.

Hu, Z.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Iida, T.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Ito, Y.

H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
[Crossref] [PubMed]

Izatt, J. A.

Jonas, J. B.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Kaiser, P. K.

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

Kajic, V.

Keane, P. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Kim, S. M.

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Kirker, A. W.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Ko, A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Kolmogorov, V.

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004).
[Crossref] [PubMed]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Kowal, J.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Kozak, I.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Kutzscher, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Lang, A.

Lee, K.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Lee, S.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Leng, T.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Li, K.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Li, X. T.

Lotery, A. J.

M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
[Crossref] [PubMed]

Ma, J.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Maldonado, R. S.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Manjunath, V.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

Marshall, D.

Maruko, I.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Marziliano, P.

Mehta, H.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Merkur, A. B.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Millar, T. J.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Moreno, T. A.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Mullins, R. F.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Nicholas, P.

Niemeijer, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

O’Connell, R. V.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Ouyang, Y.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Oyamada, H.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Pakzad-Vaezi, K.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Park, S. Y.

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Patel, P. J.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Pircher, M.

Považay, B.

Pozzoni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Prince, J. L.

Read, S. A.

Regatieri, C. V.

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Rosin, P. L.

Rubin, D. L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Sadda, S. R.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

Sarks, S.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Sarunic, M. V.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

Schröder, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Sekiryu, T.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Shao, L.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Sim, D. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Singh, A. D.

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

Smith, B. R.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

Song, Q.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

Song, Y. M.

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Sonka, M.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Sotirchos, E. S.

Spaide, R. F.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol. 147(5), 801–810 (2009).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Sugano, Y.

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Sung, J.

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Taha, M.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Tanabe, H.

H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
[Crossref] [PubMed]

Terasaki, H.

H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
[Crossref] [PubMed]

Tian, J.

Torres, V. L.

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

Torzicky, T.

Toth, C. A.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Tran-Viet, D.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Tufail, A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Tun, T. A.

Vaegan, T. J.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Wallace, D. K.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

Wang, H.

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

Wang, S.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Wang, Y. X.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Wei, W. B.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Wolf-Schnurrbusch, U.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

Wu, X.

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Xu, L.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Yamanari, M.

Yang, L. H.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Yasuno, Y.

Yazdanpanah, A.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

Yin, Z. Q.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Ying, H. S.

You, Q. S.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Young, M.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Zarranz-Ventura, J.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Zheng, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Zhou, J. Q.

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

Zotter, S.

Am. J. Ophthalmol. (6)

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol. 147(5), 801–810 (2009).
[Crossref] [PubMed]

V. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical coherence tomography enhanced depth imaging of choroidal tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

S. Y. Park, S. M. Kim, Y. M. Song, J. Sung, and D. I. Ham, “Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography,” Am. J. Ophthalmol. 156(3), 557–566 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Eye (Lond.) (1)

M. Gemenetzi, G. De Salvo, and A. J. Lotery, “Central serous chorioretinopathy: an update on pathogenesis and treatment,” Eye (Lond.) 24(12), 1743–1756 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (5)

Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Optimal multiple surface segmentation with shape and context priors,” IEEE Trans. Med. Imaging 32(2), 376–386 (2013).
[Crossref] [PubMed]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011).
[Crossref] [PubMed]

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging 32(3), 531–543 (2013).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(4), 2893–2901 (2013).
[Crossref] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci. 54(3), 1722–1729 (2013).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

J. Chhablani, G. Barteselli, H. Wang, S. El-Emam, I. Kozak, A. L. Doede, D. U. Bartsch, L. Cheng, and W. R. Freeman, “Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(4), 2274–2280 (2012).
[Crossref] [PubMed]

L. Shao, L. Xu, C. X. Chen, L. H. Yang, K. F. Du, S. Wang, J. Q. Zhou, Y. X. Wang, Q. S. You, J. B. Jonas, and W. B. Wei, “Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(1), 230–233 (2013).
[Crossref] [PubMed]

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, and C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[Crossref] [PubMed]

J. Glaucoma (1)

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma 6(1), 23–32 (1997).
[Crossref] [PubMed]

Med. Image Anal. (1)

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Numer. Math. (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Ophthalmology (1)

L. Branchini, C. V. Regatieri, I. Flores-Moreno, B. Baumann, J. G. Fujimoto, and J. S. Duker, “Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems,” Ophthalmology 119(1), 119–123 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Retina (3)

H. Tanabe, Y. Ito, and H. Terasaki, “Choroid is thinner in inferior region of optic disks of normal eyes,” Retina 32(1), 134–139 (2012).
[Crossref] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina 31(3), 510–517 (2011).
[Crossref] [PubMed]

Other (1)

H. Danesh, R. Kafieh, H. Rabbani, and F. Hajizadeh, “Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts,” Comput.Math. Method. M. 2014, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Comparison between HD-OCT and EDI-OCT images. (a) HD-OCT image. (b) EDI-OCT image. (c) High reflectivity regions of HD-OCT image. (d) High reflectivity regions of EDI-OCT image.
Fig. 2
Fig. 2 (a) An original HD-OCT image. (b) Several structures are manually labeled. RNFL: Retinal Nerve Fiber Layer, ONL: Outer Nuclear Layer (dark stripe marked with a white straight line), IS/OS: Inner Segment/Out Segment (bright thin stripe marked with an orange straight line), RPE: Retinal Pigment Epithelium (bright stripe marked with a black straight line), BM: Bruch’s Membrane (green curve), CSI: Choroidal-Scleral Interface (red curve). Vitreous: dark region above RNFL, Choroid: region between BM and CSI, Sclera: sub-CSI region.
Fig. 3
Fig. 3 BM segmentation result (green line) in the original image (a) and the flattened image (b).
Fig. 4
Fig. 4 Analysis of CSI boundary characteristics. (a) and (b) are the original and smoothed choroid-sclera parts of the flattened image (Fig. 3), respectively. (c) The intensity profile of one column corresponding to the dashed red line in (b), where the CSI boundary position corresponding to the position pointed out in (b) and its gradual intensity distance are marked.
Fig. 5
Fig. 5 Gradual intensity distance image of Fig. 4(b), where the x-axis, y-axis and scale bar are also shown.
Fig. 6
Fig. 6 (a) Difference image of the gradual intensity distance image (Fig. 5). (b) The positions with the maximum difference are marked with red circles in the smoothed choroid-sclera parts (Fig. 4(b)).
Fig. 7
Fig. 7 Projection of primary CSI points in the horizontal direction (a). The refined difference image (b) and CSI boundary points marked in red circles (c).
Fig. 8
Fig. 8 The curve detection problem. (a) the curves Ci and Cj in a 2-D image, (b) the constructed directed graph of two adjacent columns. Dark solid lines are intra arcs; orange lines are inter-arcs; green solid lines are smooth constraint; and the dashed lines are optional.
Fig. 9
Fig. 9 CSI segmentation comparison between the original method and the improved method. (a) The segmentation obtained using the original graph search method. (b) The segmentation achieved using the proposed graph search with the curve smoothness constraint.
Fig. 10
Fig. 10 Thickness difference of each column of all tested images, where the blue line is the mean thickness difference of each column.
Fig. 11
Fig. 11 Segmentation results for choroid with dark columns on each side. (a) Original image. (b) Our method. (c) Expert 1. (d) Expert 2.
Fig. 12
Fig. 12 Segmentation results for thin choroid. (a) Original image. (b) Our method. (c) Expert 1. (d) Expert 2.
Fig. 13
Fig. 13 Segmentation results for weak CSI boundary. (a) Original image. (b) Our method. (c) Expert 1. (d) Expert 2.
Fig. 14
Fig. 14 Two segmentation mistakes. Segmentation results of our method (Upper row) and one expert (Bottom row). (a) Epiretinal membrane. (b) Large choroidal vessel.
Fig. 15
Fig. 15 BM segmentation comparison. (a) Original image. (b) Estimated high reflectivity regions. (c) Remained high reflectivity regions after Chen’s RNFL complex removal. (d) BM segmentation result with Chen’s algorithm. (e) Remained high reflectivity regions after our RNFL complex removal. (f) BM segmentation result with our improved algorithm.
Fig. 16
Fig. 16 Mean boundary difference comparison for all test images
Fig. 17
Fig. 17 Comparison of CSI segmentation between Tian’s and our methods. (a) Original image. (b) CSI segmentation results with Tian’s (red curve) and our (green curve) methods. (c) Flattened choroid-sclera parts. (d) CSI candidate points (red circle) with Tian’s method. (e) Primary CSI boundary (yellow curve) with Tian’s method. (f) CSI edge cost image with our method. (g) CSI segmentation result (green curve) with our method.

Tables (4)

Tables Icon

Table 1 Within-expert and between-expert correlation coefficients (cc), paired U-test p-values, absolute boundary difference, mean boundary difference, thickness difference, overlap ratio, overestimated ratio and underestimated ratio evaluation between the manual segmentations.

Tables Icon

Table 2 Correlation coefficients (cc), paired U-test p-values, absolute boundary difference, mean boundary difference, thickness difference, overlap ratio, overestimated ratio and underestimated ratio between our segmentation method (Our Seg.) and expert segmentations.

Tables Icon

Table 3 Absolute boundary difference (AMD) and mean boundary difference (MBD) of the BM segmentation results between Chen’s algorithm (Chen’s Alg.), our improved algorithm (Our Imp. Alg.) and average expert (Avg. Exp.) segmentations.

Tables Icon

Table 4 Absolute boundary difference (AMD) and mean boundary difference (MBD) of the CSI segmentation results between Tian’s algorithm (Tian’s Alg.), our algorithm (Our Alg.) and average expert (Avg. Exp.) segmentations.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

D(x,y)={ D(x+1,y)+1 if I a (x,y) I a (x+1,y) 0 if I a (x,y)< I a (x+1,y)
CS I 0 ={ ( x CSI ,y)| x CSI = argmax x[1,Nr] D x (x,y),y[1,Nc] }
E intra ={ V( y,x ),V( y,x1 ) | x>0 }
E inter ={ { V( y,x ),V( y+1,max( x Δ y ,0 ) ) | y{ 0,,Y2 },xx } { V( y,x ),V( y1,max( x Δ y ,0 ) ) | y{ 0,,Y1 },xx } { V( y,x ),V( y1,x ) | y{ 0,,Y1 },xx } { V( y,x ),V( y+1,x ) | y{ 0,,Y2 },xx }
w i ( y,x )={ c i ( y,x ) if x=0 c i ( y,x ) c i ( y,x1 ) otherwise
f( I( y,x )I( y ,x ) )= e I( y,x )I( y ,x ) 2 σ 2
E( c )= i=1 n I( y,x )c c i ( y,x )+α i=1 n I( y,x ),I( y ,x )c f( I( y,x )I( y ,x ) )
ABD ¯ ( X;Y )= 1 K k=1 K 1 n i=1 n | X k i Y k i |
std( ABD )( X;Y )= 1 K k=1 K ( 1 n i=1 n | X k i Y k i | ABD ¯ ( X;Y ) ) 2
MBD ¯ ( X;Y )= 1 K k=1 K 1 n i=1 n ( X k i Y k i )
std( MBD )( X;Y )= 1 K k=1 K ( 1 n i=1 n ( X k i Y k i ) MBD ¯ ( X;Y ) ) 2 ,
TD ¯ ( X;Y )= 1 K k=1 K 1 n i=1 n ( T X k i T Y k i )
std( TD )( X;Y )= 1 K k=1 K ( 1 n i=1 n ( T X k i T Y k i ) TD ¯ ( X;Y ) ) 2
Overlap ¯ ( X;Y )= 1 K k=1 K X k Y k X k Y k
std( Overlap )( X;Y )= 1 K k=1 K ( X k Y k X k Y Overlap ¯ ( X;Y ) ) 2
Overest ¯ ( X;Y )= 1 K k=1 K X ¯ k Y k X k
std( Overest )( X;Y )= 1 K k=1 K ( X ¯ k Y k X k Overest ¯ ( X;Y ) ) 2
Undest ¯ ( X;Y )= 1 K k=1 K X k Y ¯ k X k
std( Undest )( X;Y )= 1 K k=1 K ( X k Y ¯ k X k Undest ¯ ( X;Y ) ) 2 ,

Metrics