Abstract

Polarization resolved nonlinear microscopy (PRNM) is a powerful technique to gain microscopic structural information in biological media. However, deep imaging in a variety of biological specimens is hindered by light scattering phenomena, which not only degrades the image quality but also affects the polarization state purity. In order to quantify this phenomenon and give a framework for polarization resolved microscopy in thick scattering tissues, we develop a characterization methodology based on four wave mixing (FWM) process. More specifically, we take advantage of two unique features of FWM, meaning its ability to produce an intrinsic in-depth local coherent source and its capacity to quantify the presence of light depolarization in isotropic regions inside a sample. By exploring diverse experimental layouts in phantoms with different scattering properties, we study systematically the influence of scattering on the nonlinear excitation and emission processes. The results show that depolarization mechanisms for the nonlinearly generated photons are highly dependent on the scattering center size, the geometry used (epi/forward) and, most importantly, on the thickness of the sample. We show that the use of an un-analyzed detection makes the polarization-dependence read-out highly robust to scattering effects, even in regimes where imaging might be degraded. The effects are illustrated in polarization resolved imaging of myelin lipid organization in mouse spinal cords.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté
Opt. Express 17(21) 18419-18432 (2009)

Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy

Yan Fu, Haifeng Wang, Riyi Shi, and Ji-Xin Cheng
Opt. Express 14(9) 3942-3951 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011).
    [Crossref]
  2. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
    [Crossref]
  3. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
    [Crossref]
  4. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
    [Crossref]
  5. J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
    [Crossref]
  6. I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
    [Crossref] [PubMed]
  7. K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
    [Crossref] [PubMed]
  8. C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
    [Crossref] [PubMed]
  9. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
    [Crossref]
  10. Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
    [Crossref] [PubMed]
  11. A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
    [Crossref] [PubMed]
  12. A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
    [Crossref] [PubMed]
  13. P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
    [Crossref] [PubMed]
  14. D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003).
    [Crossref] [PubMed]
  15. M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).
  16. G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
    [Crossref] [PubMed]
  17. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
    [Crossref] [PubMed]
  18. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17, 18419–18432 (2009).
    [Crossref]
  19. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
    [Crossref] [PubMed]
  20. F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
    [Crossref] [PubMed]
  21. F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing for structural imaging in thick tissues,” J. Opt. Soc. Am. B 29, 1541–1550 (2012).
    [Crossref]
  22. G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
    [Crossref]
  23. F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
    [Crossref]
  24. D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007).
    [Crossref] [PubMed]
  25. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  26. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  27. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006).
  28. H. C. Gerritsen and C. J. De Grauw, “Imaging of optically thick specimen using two-photon excitation microscopy,” Microsc. Res. Techniq. 47, 206–209 (1999).
    [Crossref]
  29. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000).
    [Crossref]
  30. V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: Diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
    [Crossref]
  31. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
    [Crossref]
  32. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
    [Crossref]
  33. C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
    [Crossref] [PubMed]
  34. E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19, 22755–22774 (2011).
    [Crossref] [PubMed]
  35. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express 19, 4937–4948 (2011).
    [Crossref] [PubMed]
  36. S. P. Morgan, M. P. Khong, and M. G. Somekh, “Effects of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).
    [Crossref] [PubMed]
  37. C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–299 (2011).
    [Crossref] [PubMed]
  38. D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
    [Crossref] [PubMed]
  39. I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010).
    [Crossref] [PubMed]
  40. O. Nadiarnykh, R. LaComb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348–3360 (2007).
    [Crossref] [PubMed]
  41. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
    [Crossref] [PubMed]
  42. F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
    [Crossref]
  43. P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
    [Crossref] [PubMed]
  44. R. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser.-A 253, 358–379 (1959).
    [Crossref]
  45. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [Crossref]
  46. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  47. G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
    [Crossref]
  48. J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
    [Crossref]
  49. S. Bégin, O. Dupont-Therrien, E. Bélanger, A. Daradich, S. Laffray, Y. De Koninck, and D. C. Côté, “Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue,” Biomed. Opt. Express 5, 4145–4161 (2014).
    [Crossref]
  50. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
    [Crossref]
  51. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [Crossref] [PubMed]
  52. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799–1804 (2004).
    [Crossref]
  53. N. Ghosh, H. Patel, and P. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
    [Crossref] [PubMed]
  54. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
    [Crossref]
  55. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
    [Crossref] [PubMed]
  56. S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).
  57. P. Refregier, M. Roche, J. Duboisset, and S. Brasselet, “Precision increase with two orthogonal analyzers in polarization resolved second harmonic generation microscopy,” Opt. Lett. 37, 4173–4175 (2012).
    [Crossref]
  58. J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
    [Crossref] [PubMed]
  59. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  60. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref] [PubMed]

2014 (6)

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

S. Bégin, O. Dupont-Therrien, E. Bélanger, A. Daradich, S. Laffray, Y. De Koninck, and D. C. Côté, “Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue,” Biomed. Opt. Express 5, 4145–4161 (2014).
[Crossref]

2013 (2)

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

2012 (8)

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing for structural imaging in thick tissues,” J. Opt. Soc. Am. B 29, 1541–1550 (2012).
[Crossref]

J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
[Crossref] [PubMed]

P. Refregier, M. Roche, J. Duboisset, and S. Brasselet, “Precision increase with two orthogonal analyzers in polarization resolved second harmonic generation microscopy,” Opt. Lett. 37, 4173–4175 (2012).
[Crossref]

G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
[Crossref]

2011 (4)

2010 (5)

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref] [PubMed]

2009 (6)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
[Crossref]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17, 18419–18432 (2009).
[Crossref]

2008 (1)

2007 (5)

O. Nadiarnykh, R. LaComb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348–3360 (2007).
[Crossref] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
[Crossref]

2006 (1)

2005 (4)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[Crossref]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (2)

2001 (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

2000 (3)

1999 (1)

H. C. Gerritsen and C. J. De Grauw, “Imaging of optically thick specimen using two-photon excitation microscopy,” Microsc. Res. Techniq. 47, 206–209 (1999).
[Crossref]

1997 (1)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

1992 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

1973 (1)

1959 (1)

R. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser.-A 253, 358–379 (1959).
[Crossref]

Aït-Belkacem, D.

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

Allain, J.-M.

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Araki, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
[Crossref] [PubMed]

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Bautista, G.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Beaurepaire, E.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
[Crossref] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

Bégin, S.

Bélanger, E.

Bentley, A.

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

Berns, M. W.

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

Bifone, A.

Billard, F.

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

Bioud, F.-Z.

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Bonner, R. F.

Brasselet, S.

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing for structural imaging in thick tissues,” J. Opt. Soc. Am. B 29, 1541–1550 (2012).
[Crossref]

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

P. Refregier, M. Roche, J. Duboisset, and S. Brasselet, “Precision increase with two orthogonal analyzers in polarization resolved second harmonic generation microscopy,” Opt. Lett. 37, 4173–4175 (2012).
[Crossref]

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref] [PubMed]

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[Crossref] [PubMed]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

Brustlein, S.

Campagnola, P. J.

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

O. Nadiarnykh, R. LaComb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348–3360 (2007).
[Crossref] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Chaigneau, E.

E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19, 22755–22774 (2011).
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

Chen, S. J.

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

Cheng, J.-X.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Cho, B. R.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

Chu, S. W.

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

Chung, C.-Y.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Coleno, M.

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Côté, D.

Côté, D. C.

Da Silva, L. B.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

Dana, H.

Daradich, A.

Daria, V. R.

De Grauw, C. J.

H. C. Gerritsen and C. J. De Grauw, “Imaging of optically thick specimen using two-photon excitation microscopy,” Microsc. Res. Techniq. 47, 206–209 (1999).
[Crossref]

De Koninck, Y.

de Vito, G.

Débarre, D.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
[Crossref] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Delannoy, L.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Denk, W.

Didier, M. E. P.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Duboisset, J.

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

P. Refregier, M. Roche, J. Duboisset, and S. Brasselet, “Precision increase with two orthogonal analyzers in polarization resolved second harmonic generation microscopy,” Opt. Lett. 37, 4173–4175 (2012).
[Crossref]

Dunn, A. K.

Dupont-Therrien, O.

Dutto, F.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Favard, C.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

Feng, R.-R.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Feng, Y.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Ferrand, P.

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Fu, Y.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

Gachet, D.

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

Gandjbakhche, A. H.

Gasecka, A.

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[Crossref] [PubMed]

Gasecka, P.

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

Ge, N.-H.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Gerritsen, H. C.

H. C. Gerritsen and C. J. De Grauw, “Imaging of optically thick specimen using two-photon excitation microscopy,” Microsc. Res. Techniq. 47, 206–209 (1999).
[Crossref]

Ghosh, N.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Girkin, J. M.

Gupta, P.

Gusachenko, I.

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010).
[Crossref] [PubMed]

Hale, G. M.

Han, T.-J.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

Han, Y.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Hayakawa, C. K.

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–299 (2011).
[Crossref] [PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

He, G. S.

G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
[Crossref]

Houssen, Y. G.

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Huttunen, M.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Ikonen, E.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Kanerva, K.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Kauranen, M.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Kawata, S.

Khong, M. P.

Kienle, A.

J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
[Crossref]

Kim, B. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

Kress, A.

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

Krishnamachari, V. V.

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

LaComb, R.

Lacoste, D.

Laffray, S.

Latour, G.

Lee, S.-C.

J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
[Crossref]

Lenke, R.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Lien, C.-H.

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

Lin, C. H.

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Macias-Romero, C.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

Maekawa, H.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Mahou, P.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
[Crossref] [PubMed]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

Mertz, J.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

Mohler, W. A.

Morgan, S. P.

Mosk, A. P.

Munhoz, F.

F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing for structural imaging in thick tissues,” J. Opt. Soc. Am. B 29, 1541–1550 (2012).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref] [PubMed]

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[Crossref] [PubMed]

Nadiarnykh, O.

Oertel, D. C.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

Olivier, N.

Oron, D.

Patel, H.

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Pfisterer, S.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Piazza, V.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

Poland, S. P.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Potma, E. O.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–299 (2011).
[Crossref] [PubMed]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Qin, H.-Y.

G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
[Crossref]

Querry, M. R.

Radenovic, A.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Raghunathan, V.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

Ranjan, S.

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

Recher, G.

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
[Crossref]

Refregier, P.

Reiser, K. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

Richards, R.

R. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser.-A 253, 358–379 (1959).
[Crossref]

Rigneault, H.

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing for structural imaging in thick tissues,” J. Opt. Soc. Am. B 29, 1541–1550 (2012).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

Roche, M.

P. Refregier, M. Roche, J. Duboisset, and S. Brasselet, “Precision increase with two orthogonal analyzers in polarization resolved second harmonic generation microscopy,” Opt. Lett. 37, 4173–4175 (2012).
[Crossref]

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

Rojas-Ochoa, L. F.

Roke, S.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Rouède, D.

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
[Crossref]

Rubenchik, A. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

Saloma, C.

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Sasaki, K.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

Schäfer, J.

J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
[Crossref]

Schanne-Klein, M.-C.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues”, Biomed. Opt. Express 3, 1898–1913 (2012).
[Crossref] [PubMed]

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Scheffold, F.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[Crossref] [PubMed]

Schön, P.

Schurtenberger, P.

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

Shoham, S.

Silberberg, Y.

Silver, R. A.

Somekh, M. G.

Stoller, P.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

Sun, C. K.

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Tai, S. P.

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

Tal, E.

Tauc, P.

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Theer, P.

Tiaho, F.

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
[Crossref]

Tilbury, K.

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

Tohno, Y.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Tran, V.

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Tromberg, B. J.

Tuchin, V. V.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006).

Valenton, T.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

Vallée, R.

Vellekoop, I. M.

Venugopalan, V.

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–299 (2011).
[Crossref] [PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Wallace, V. P.

Wang, H.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

Wang, L. V.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006).

Wang, X.

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

Ward, J. L.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[Crossref]

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[Crossref]

Wolf, E.

R. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser.-A 253, 358–379 (1959).
[Crossref]

Wright, A. J.

Yasui, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
[Crossref] [PubMed]

Younger, R.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

Zeng, J.

Zheng, Q.

G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
[Crossref]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

Zimmerley, M.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

Zimnyakov, D. A.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006).

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[Crossref]

Zubkovs, V.

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (6)

Appl. Phys. Lett (1)

S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett 43, 2861–2867 (2007).

Biomed. Opt. Express (3)

Biophys. J. (7)

I. Gusachenko, Y. G. Houssen, V. Tran, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

K. Tilbury, C.-H. Lien, S. J. Chen, and P. J. Campagnola, “Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354–365 (2014).
[Crossref] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[Crossref]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[Crossref] [PubMed]

P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map fluorophores orientational behavior,” Biophys. J. 106, 2330–2339 (2014).
[Crossref] [PubMed]

G. Bautista, S. Pfisterer, M. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107, 2230–2236 (2014).
[Crossref] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Appl. Phys. (1)

G. S. He, H.-Y. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys. 105, 023110 (2009).
[Crossref]

J. Biomed. Opt. (2)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[Crossref]

J. Neurosci. Meth. (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Meth. 111, 29–37 (2001).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6159 (2013).
[Crossref] [PubMed]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B,  114, 10200–10208 (2010).
[Crossref] [PubMed]

J. Quant. Spectrosc. Ra. (1)

J. Schäfer, S.-C. Lee, and A. Kienle, “Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence,” J. Quant. Spectrosc. Ra. 113, 2113–2123 (2012).
[Crossref]

J. Raman Spec. (1)

F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, “Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy,” J. Raman Spec. 40, 775–780 (2009).
[Crossref]

Microsc. Res. Techniq. (1)

H. C. Gerritsen and C. J. De Grauw, “Imaging of optically thick specimen using two-photon excitation microscopy,” Microsc. Res. Techniq. 47, 206–209 (1999).
[Crossref]

Nano Letters (1)

C. Macias-Romero, M. E. P. Didier, V. Zubkovs, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Letters 14, 2552–2557 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2005).
[Crossref] [PubMed]

Opt. and Quant. Elec. (1)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. and Quant. Elec. 37, 1397–1408 (2005).
[Crossref]

Opt. Expr. (1)

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Expr. 15, 4054–4065 (2007).
[Crossref]

Opt. Express (10)

N. Ghosh, H. Patel, and P. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
[Crossref] [PubMed]

O. Nadiarnykh, R. LaComb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348–3360 (2007).
[Crossref] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007).
[Crossref] [PubMed]

H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express 19, 4937–4948 (2011).
[Crossref] [PubMed]

E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19, 22755–22774 (2011).
[Crossref] [PubMed]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[Crossref] [PubMed]

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17, 18419–18432 (2009).
[Crossref]

D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010).
[Crossref] [PubMed]

G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (2)

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization resolved second harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[Crossref]

Phys. Rev. B (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[Crossref]

Phys. Rev. E (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[Crossref]

Phys. Rev. Lett. (4)

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref] [PubMed]

A. Gasecka, P. Tauc, A. Bentley, and S. Brasselet, “Investigation of molecular and protein crystals by three photon polarization resolved microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy,” Phys. Rev. X 3, 011002 (2013).

Proc. R. Soc. London Ser.-A (1)

R. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser.-A 253, 358–379 (1959).
[Crossref]

Other (2)

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer, 2006).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Simplified experimental layout. Pump/Stokes beams are steered into an inverted microscope system and CARS photons are collected in the backward direction (epi geometry), polarization selected with analyzer (‖) and spectrally filtered with suitable bandpass filter (BP) before detectors (PMT). b) epi-CARS images at the surface of a large and thick spinal cord (upper panel) or of a thin slice (lower panel). These images are generated by adding images taken at different excitation polarizations angles. c) Polarization responses from homogeneous regions in the background of the image, coming from non-resonant signal (FWM) from the isotropic surrounding medium of the myelin sheath fibers. Regardless of the homogeneous region probed, the polarization responses features are correlated with the length of the specimen. The intensity scale is normalized and the plots are the average of the pixels shown in the rectangle in part b). d) Quantified DOLP in both cases, on a region containing ≈100 pixels depicted by the square added in b). The scale bar is 5 μm.
Fig. 2
Fig. 2 Influence of scattering on the epi-detected FWM vs z-direction. The intensity measurements (blue) and DOLP measurements (green) are for different particles size systems: ka = 17.3, l/ls = 11, g = 0.83 (dashed lines, circles) and ka = 0.8, l/ls = 9, g = 0.12 (continuous lines, squares). The intensity raises as the focus reaches the glass-dispersion interface and after crossing it, drastically drops inside the scattering medium. Conversely, the DOLP is rather robust with a small slope. The intensity measurement for ka = 0.8 is shifted by 0.2 units for clarity purposes. Error bars are two standard deviation of three measurements (three non-resonant regions). The seemly missing error bars are smaller than the marker size.
Fig. 3
Fig. 3 Dependence of the depolarization of the detected photons on the (normalized) thickness of the scattering medium (l/ls) and experimental geometry. a) DOLP of FWM photons detected in the forward direction (green) for particles smaller (g = 0.14, squares, continuous lines) and bigger (g = 0.83, circles, dashed lines) than the wavelength. b) Same as a), but in the epi direction. c) The panels depicts the depolarization mechanisms for each particle size used in this study (read text for further details). The features in the sketch are not in scale.
Fig. 4
Fig. 4 CARS polarization dependence analysis in thick and thin spinal cord samples (see Fig. 1). a) DOLP images of the thin sample with histogram (inset) from horizontal fiber regions (white box). b) Similar analysis performed on the thick sample image. Note the disparate outcome when compared to part a), where aligned fibers and background have similar values. c) Similar analysis as in Fig. 1(b) (left panel) and Fig. 4(a),(b) (right panel) for a thick sample, but performed on data taken without any analyzer. Since the background does not have a modulation of the signal, it is filtered out from the analysis (right panel). We have also measured a thin sample in such experimental arrangement leading to similar results. The sum images should not be compared on a quantitative basis due to different experimental conditions. The scale bars are 5 μm.
Fig. 5
Fig. 5 Influence of scattering on image resolution (2PF) and depolarization of the excitation photons (FWM). a) Experimental layout for forward-direction experiments. To record the 2PF images, we blocked the Stokes beam to avoid any spurious processes. b) 2PF line profiles of a bead on a coverslip after a scattering medium (g = 0.83, red dots) and a transparent medium (blue square). The scattering medium length is 120 μm. One can obviously see that the resolution is not affected by scattering. Error bars are two standard deviation of three beads line profiles. c) FWM polarization responses generated after the scattering medium. Error bars are two standard deviation of two data sets.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DOLP = I I I + I

Metrics