Abstract

Metasurfaces made of subwavelength resonators can modify the wave front of light within the thickness much less than free space wavelength, showing great promises in integrated optics. In this paper, we theoretically show that electric and magnetic resonances supported simultaneously by a subwavelength nanowire with high refractive-index can be utilized to design metasurfaces with near-unity transmittance. Taking silicon nanowire for instance, we design numerically a near-infrared quarter-waveplate with high transmittance using a subwavelength nanowire array. The operation bandwidth of the waveplate is 0.14 μm around the center wavelength of 1.71 μm. The waveplate can convert a 45° linearly polarized incident light to circularly polarized light with conversion efficiency ranging from 94% to 98% over the operation band. The performance of quarter waveplate can in principle be tuned and improved through optimizing the parameters of nanowire arrays. Its compatibility to microelectronic technologies opens up a distinct possibility to integrate nanophotonics into the current silicon-based electronic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation

Katherine T. Fountaine, Christian G. Kendall, and Harry A. Atwater
Opt. Express 22(S3) A930-A940 (2014)

Highly efficient and broadband optical polarizers based on dielectric nanowires

M. H. Alizadeh and B. M. Reinhard
Opt. Express 25(19) 22897-22904 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [Crossref] [PubMed]
  3. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  4. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
    [Crossref]
  5. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  6. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
    [Crossref] [PubMed]
  7. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  8. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  9. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  10. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
    [Crossref] [PubMed]
  11. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
    [Crossref] [PubMed]
  12. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  13. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  14. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
    [Crossref]
  15. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref] [PubMed]
  16. P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  17. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  18. J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
    [Crossref] [PubMed]
  19. B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
    [Crossref]
  20. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  21. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [Crossref]
  22. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  23. M. Selvanayagam and G. V. Eleftheriades, “Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation,” Opt. Express 21(12), 14409–14429 (2013).
    [Crossref] [PubMed]
  24. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  25. Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
    [Crossref] [PubMed]
  26. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  27. Y. Dai, W. Ren, H. Cai, H. Ding, N. Pan, and X. Wang, “Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure,” Opt. Express 22(7), 7465–7472 (2014).
    [Crossref] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
    [Crossref] [PubMed]
  30. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  31. L. B. Felsen, and N. Marcuvitz, Radiation and Scattering of Waves (Wiley-IEEE, 1994).
  32. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]

2014 (4)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Y. Dai, W. Ren, H. Cai, H. Ding, N. Pan, and X. Wang, “Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure,” Opt. Express 22(7), 7465–7472 (2014).
[Crossref] [PubMed]

2013 (9)

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

M. Selvanayagam and G. V. Eleftheriades, “Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation,” Opt. Express 21(12), 14409–14429 (2013).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

2012 (5)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

2010 (3)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

2009 (3)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

2007 (1)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

2004 (1)

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Almeida, V. R.

Alù, A.

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Anderson, Z.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Barrios, C. A.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Berding, M.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Briggs, D. P.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Cai, H.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Chui, S. T.

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

Dai, Y.

Ding, H.

Dong, G.

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

Du, J.

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

Eleftheriades, G. V.

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

García-Cámara, B.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Gómez-Medina, R.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

González, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Hao, J.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Hess, O.

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huang, X.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Jokerst, N. M.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

Kravchenko, I. I.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Li, X.

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Lin, Z.

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Maier, S. A.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Monticone, F.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Moreno, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Nielsen, M. G.

Nieto-Vesperinas, M.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Oulton, R. F.

Pan, N.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Pors, A.

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Qiu, M.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Ren, W.

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Sáenz, J. J.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Selvanayagam, M.

Shi, J.

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Slovick, B.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Smith, D. R.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Sun, L.

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, X.

Xu, Q.

Yang, Y. M.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Z. G.

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, W.

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhao, Y.

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhou, L.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

ACS Nano (2)

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, “Alignment-free three-dimensional optical metamaterials,” Adv. Mater. 26(9), 1439–1445 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

J. Nanophoton. (1)

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (2)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Phys. Rev. B (3)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

B. Slovick, Z. G. Yu, M. Berding, and S. Krishnamurthy, “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88(16), 165116 (2013).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Phys. Rev. Lett. (4)

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110(16), 163902 (2013).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

L. B. Felsen, and N. Marcuvitz, Radiation and Scattering of Waves (Wiley-IEEE, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the cross section of silicon nanowire and the simulation model. Nanowire is infinite in the direction perpendicular to XY plane, and its dimensions along the x-axis (width) and y-axis (height) are 240 nm and 340 nm, respectively. TF and SF represent total field and scattering field. (b) Scattering efficiency of the nanowire for TM (black solid line) and TE (red dashed line) polarized incident light. Magnetic field distributions for TM mode at the wavelengths of (c) 1.06 μm and (d) 1.4 μm. The white lines in (c) and (d) indicate the boundaries of the nanowire.
Fig. 2
Fig. 2 Simulated (solid lines) and EMDs fitted (dashed-dotted lines) far-field scattering pattern at the wavelengths of 1.06 μm, 1.6 μm and 1.9 μm. (b) The retrieved fitting parameters of amplitude of MD moment (black line), amplitude of ED moment (red line) and the real part of ED moment (blue line). The units for ED and MD moments are C·m and A·m·s, respectively.
Fig. 3
Fig. 3 The transmittances for the Si nanowires array calculated by the coupled dipoles model (blue line), and the numerical simulation results for the arrays with periodicity of 0.4 μm (black line) and 0.6 μm (red line).
Fig. 4
Fig. 4 (a) Transmittances of the waveplate for TM mode (black solid line) and TE mode (dashed black line). Blue line indicates the transmission ratio of TM mode to TE one. (b) The phase differences Δφ between the transmitted lights for TM and TE mode.
Fig. 5
Fig. 5 (a) The ellipticity of the transmitted light. The inset shows the polarization angle of the incident light and schematic of the transmitted elliptically polarized light. (b) The polarization conversion efficiency of the waveplate.
Fig. 6
Fig. 6 The influences of the nanowire width on the transmittances of (a) TM mode, (b) TE mode, and (c) phase differences Δφ. (d) The characterization of a designed broadband waveplate. The transmittances for TM mode (solid black line), TE mode (dashed black line) and phase differences (blue line) of the transmitted light are shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| H z T (θ) | 2 = | H z m + H z p | 2 = | A | 2 | m | 2 [ 12Re( p/m )sinθ+ | p/m | 2 sin 2 θ ]
R k 0 2 ( [ Re( α eff E )Re( α eff M ) ] 2 + [ Im( α eff E )Im( α eff M ) ] 2 )
χ= 1+ 1 sin 2 ( 2β ) sin 2 Δφ 1 1 sin 2 ( 2β ) sin 2 Δφ

Metrics