Abstract

We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
    [Crossref]
  2. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
    [Crossref]
  3. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
    [Crossref]
  4. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22(22), 1716–1718 (1997).
    [Crossref] [PubMed]
  5. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3472–3473 (2000).
    [Crossref]
  6. P. C. Wagenblast, U. Morgner, F. Grawert, T. R. Schibli, F. X. Kãârtner, V. Scheuer, G. Angelow, and M. J. Lederer, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27(19), 1726–1728 (2002).
    [Crossref] [PubMed]
  7. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29(8), 1894–1903 (2012).
    [Crossref]
  8. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16(11), 820–822 (1991).
    [Crossref] [PubMed]
  9. S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
    [Crossref]
  10. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
    [Crossref] [PubMed]
  11. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
    [Crossref]
  12. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
    [Crossref]
  13. A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11(3), 259–264 (2003).
    [Crossref] [PubMed]
  14. A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
    [Crossref]
  15. U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
    [Crossref]
  16. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9(12), 2271–2273 (1992).
    [Crossref]
  17. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40(36), 6638–6645 (2001).
    [PubMed]
  18. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34(2), 145–152 (1999).
    [Crossref]
  19. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40(4-5), 352–358 (2005).
    [Crossref]
  20. U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+: LiCAF lasers,” J. Opt. Soc. Am. B 26(1), 64–79 (2009).
    [Crossref]
  21. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19(21), 20444–20461 (2011).
    [Crossref] [PubMed]
  22. U. O. Farrukh, “Estimating stress and strain in end-pumped laser crystals: The case of Cr:LiCAF rod,” Modeling and Simulation of Higher-Power Laser Systems Iv 2989, 48–56 (1997).
    [Crossref]
  23. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
  24. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
    [Crossref]
  25. S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
    [Crossref]
  26. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [Crossref]
  27. H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
    [Crossref]
  28. A. Sennaroglu, A. M. Kowalevicz, A. Zare, and J. G. Fujimoto, “General design rules for multi-pass cavity lasers in ultrashort pulse generation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2004), 3 pp. vol.1.
  29. S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008).
    [Crossref] [PubMed]
  30. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  31. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
    [Crossref] [PubMed]

2014 (1)

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

2013 (1)

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (2)

2008 (1)

2007 (1)

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

2005 (2)

2003 (1)

2002 (2)

2001 (2)

J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40(36), 6638–6645 (2001).
[PubMed]

S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
[Crossref]

2000 (1)

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3472–3473 (2000).
[Crossref]

1999 (1)

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34(2), 145–152 (1999).
[Crossref]

1997 (4)

U. O. Farrukh, “Estimating stress and strain in end-pumped laser crystals: The case of Cr:LiCAF rod,” Modeling and Simulation of Higher-Power Laser Systems Iv 2989, 48–56 (1997).
[Crossref]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22(22), 1716–1718 (1997).
[Crossref] [PubMed]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
[Crossref] [PubMed]

1996 (1)

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
[Crossref]

1993 (1)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

1992 (2)

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9(12), 2271–2273 (1992).
[Crossref]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

1991 (2)

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

1970 (1)

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

Agate, B.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

Angelow, G.

Atherton, L. J.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Bass, M.

Beach, R. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Boas, D. A.

Brandle, C. D.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Brown, C. T. A.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

Burns, D.

Capmany, J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
[Crossref]

Cassanho, A.

Chai, B. H. T.

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9(12), 2271–2273 (1992).
[Crossref]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Cundiff, S. T.

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
[Crossref]

Davis, L. E.

Demirbas, U.

Dergachev, A.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Durst, M. E.

Eggert, S.

Emanuel, M. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Erbert, G.

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19(21), 20444–20461 (2011).
[Crossref] [PubMed]

Fallnich, C.

Farrukh, U. O.

U. O. Farrukh, “Estimating stress and strain in end-pumped laser crystals: The case of Cr:LiCAF rod,” Modeling and Simulation of Higher-Power Laser Systems Iv 2989, 48–56 (1997).
[Crossref]

Flint, J. H.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Frukacz, Z.

Fujimoto, J. G.

Grawert, F.

Hopkins, J. M.

Hughes, R. S.

Ippen, E. P.

Isemann, A.

Isyanova, Y.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Jabczynski, J. K.

Jenssen, H. P.

Kãârtner, F. X.

Kaertner, F. X.

Kartner, F. X.

Kärtner, F. X.

Keller, U.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Kemp, A. J.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

Kennedy, G. T.

Klimm, D.

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40(4-5), 352–358 (2005).
[Crossref]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34(2), 145–152 (1999).
[Crossref]

Knox, W. H.

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
[Crossref]

Kobat, D.

Kolodziejski, L. A.

Kopf, D.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Kowalevicz, A. M.

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Kway, W. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

Lederer, M. J.

Leitenstorfer, A.

Long, M.

Loza-Alvarez, P.

Maestre, H.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
[Crossref]

Makio, S.

S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
[Crossref]

Marion, J. E.

Mempel, T. R.

Mierczyk, Z.

Minoshima, K.

Moore, A.

Morgner, U.

Morris, R. C.

Moser, M.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Moulton, P. F.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Myers, J. F.

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Nishimura, N.

Pati, B.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Payne, S. A.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Petrich, G. S.

Reiche, P.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40(4-5), 352–358 (2005).
[Crossref]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34(2), 145–152 (1999).
[Crossref]

Rosenberg, A.

Ruvinskaya, S.

Sakadzic, S.

Sasaki, T.

S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
[Crossref]

Sato, M.

S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
[Crossref]

Schaffer, C. B.

Scheps, R.

Scheuer, V.

Schibli, T. R.

Schmalz, M.

Sennaroglu, A.

Serreze, H. B.

Sharma, V.

Sibbett, W.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
[Crossref] [PubMed]

Skidmore, J. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Slobodtchikov, E. V.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Smith, L. K.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Smith, R. G.

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Stalder, M.

Stormont, B.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

Sumpf, B.

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19(21), 20444–20461 (2011).
[Crossref] [PubMed]

Szipöcs, R.

Torizuka, K.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3472–3473 (2000).
[Crossref]

Torregrosa, A. J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
[Crossref]

Tsuda, S.

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
[Crossref]

Uecker, R.

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40(4-5), 352–358 (2005).
[Crossref]

Uemura, S.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3472–3473 (2000).
[Crossref]

Valentine, G. J.

Valster, A.

Wagenblast, P. C.

Wall, K. F.

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

Weingarten, K. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Wintner, E.

Wong, A. W.

Woods, B. W.

Xu, C.

Zendzian, W.

Zhang, G.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Annu. Rev. Mater. Sci. (1)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997).
[Crossref]

Appl. Phys. Lett. (1)

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69(11), 1538–1540 (1996).
[Crossref]

Cryst. Res. Technol. (2)

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34(2), 145–152 (1999).
[Crossref]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40(4-5), 352–358 (2005).
[Crossref]

IEEE J. Quantum Electron. (3)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28(11), 2612–2618 (1992).
[Crossref]

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dergachev, J. H. Flint, Y. Isyanova, B. Pati, E. V. Slobodtchikov, K. F. Wall, and P. F. Moulton, “Review of multipass slab laser systems,” IEEE J. Sel. Top. Quantum Electron. 13(3), 647–660 (2007).
[Crossref]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (2)

S. Makio, M. Sato, and T. Sasaki, “High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 40(Part 1, No. 4A), 2278–2281 (2001).
[Crossref]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3472–3473 (2000).
[Crossref]

Laser Phys. Lett. (1)

H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett. 10(3), 035806 (2013).
[Crossref]

Modeling and Simulation of Higher-Power Laser Systems Iv (1)

U. O. Farrukh, “Estimating stress and strain in end-pumped laser crystals: The case of Cr:LiCAF rod,” Modeling and Simulation of Higher-Power Laser Systems Iv 2989, 48–56 (1997).
[Crossref]

Opt. Commun. (2)

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205(1-3), 207–213 (2002).
[Crossref]

U. Demirbas, R. Uecker, D. Klimm, B. Sumpf, and G. Erbert, “Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395-405 nm) output,” Opt. Commun. 320, 38–42 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Other (1)

A. Sennaroglu, A. M. Kowalevicz, A. Zare, and J. G. Fujimoto, “General design rules for multi-pass cavity lasers in ultrashort pulse generation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2004), 3 pp. vol.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the multi-mode diode (MMD) pumped Cr:LiCAF laser. The schematic on the top describes the cw laser cavity. The flat high reflector (M3) was removed extending the cw cavity either for (i) intracavity frequency doubling (left) or for (ii) mode-locking experiments (right). PBS: polarizing beam splitter cube, OC: output coupler, BR plate: birefringent tuning plate, SBR: saturable Bragg reflector, GTI: Gires-Tournois interferometer.

Fig. 2
Fig. 2

(Left) Measured variation of the cw Cr:LiCAF laser power as a function of absorbed pump power for output couplers with transmissions of 0.75%, 1% and 2%, respectively. The data is taken at a crystal mount temperature of 10 °C. (Right) Measured variation of the cw Cr:LiCAF laser power as a function of crystal base temperature at an absorbed pump power of 2.3 W.

Fig. 3
Fig. 3

(Left) Measured variation of the cw Cr:LiCAF laser output beam quality (M2 factor) as a function of diode supply current. (Right) Variation of Cr:LiCAF laser output beam profile in the horizontal/slow axis as a function of diode current. The insets show recorded transverse beam profiles.

Fig. 4
Fig. 4

(Left) Measured variation of the intracavity-generated cw blue output as a function of absorbed pump power. Inset figure shows a picture of the output beam. (Right) Measured variation of blue intensity with time. Inset figure is a zoomed-in version which shows the first 5 seconds.

Fig. 5
Fig. 5

Continuous-wave mode-locking results: (a) Laser efficiency of the multimode diode pumped mode-locked Cr:LiCAF laser in different regimes of operation taken with the 2% output coupler. CW: continuous-wave operation, QS-ML: Q-switched mode-locked operation, CWML: continuous-wave mode-locked operation. Measured optical spectrum (b), autocorrelation (c), and radio frequency spectrum (d) for the 105-fs long pulses with 750 mW of average power and 96.4 MHz repetition rate.

Fig. 6
Fig. 6

Q-switched mode-locking results: (a) Q-switched pulse train intensity versus time, (b) laser efficiency of the mode-locked Cr:LiCAF laser in different regimes of operation taken with the 2% output coupler. Measured optical (c) and radio frequency spectra (d).

Metrics