Abstract

We present a semi-classical model to calculate RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) traces in the presence of a reference infrared field with a complex two-dimensional (2D) spatial distribution. The evolution of the electron spectra as a function of the pump-probe delay is evaluated starting from the solution of the classical equation of motion and incorporating the quantum phase acquired by the electron during the interaction with the infrared field. The total response to an attosecond pulse train is then evaluated by a coherent sum of the contributions generated by each individual attosecond pulse in the train. The flexibility of this model makes it possible to calculate spectrograms from non-trivial 2D field distributions. After confirming the validity of the model in a simple 1D case, we extend the discussion to describe the probe-induced phase in photo-emission experiments on an ideal metallic surface.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of attosecond streaking and RABBITT

L. Cattaneo, J. Vos, M. Lucchini, L. Gallmann, C. Cirelli, and U. Keller
Opt. Express 24(25) 29060-29076 (2016)

Theory of infrared-dressed atomic photoionization by extremely ultraviolet attosecond pulse trains

Han Chieh Lee, Shih Da Jheng, and Tsin Fu Jiang
J. Opt. Soc. Am. B 29(3) 286-293 (2012)

Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry

Reto Locher, Luca Castiglioni, Matteo Lucchini, Michael Greif, Lukas Gallmann, Jürg Osterwalder, Matthias Hengsberger, and Ursula Keller
Optica 2(5) 405-410 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
    [Crossref]
  2. A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
    [Crossref]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  4. L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
    [Crossref]
  5. S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
    [Crossref]
  6. P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
    [Crossref] [PubMed]
  7. M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
    [Crossref] [PubMed]
  8. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
    [Crossref] [PubMed]
  9. K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
    [Crossref] [PubMed]
  10. J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
    [Crossref] [PubMed]
  11. H. G. Muller, “Reconstruction of attosecond harmonic beating by interference of two-photon transitions,” Appl. Phys. B 74, s17–s21 (2002).
    [Crossref]
  12. A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
    [Crossref] [PubMed]
  13. S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
    [Crossref] [PubMed]
  14. R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].
  15. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005).
    [Crossref]
  16. J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
    [Crossref]
  17. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [Crossref]
  18. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  19. R. Courths and S. Hüfner, “Photoemission experiments on copper,” Phys. Rep. 112(2), 53–171 (1984).
    [Crossref]

2014 (1)

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

2012 (2)

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

2011 (1)

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

2010 (1)

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

2009 (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

2008 (1)

J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
[Crossref]

2007 (1)

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

2005 (1)

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005).
[Crossref]

2002 (2)

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

H. G. Muller, “Reconstruction of attosecond harmonic beating by interference of two-photon transitions,” Appl. Phys. B 74, s17–s21 (2002).
[Crossref]

2001 (2)

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

1998 (1)

1991 (1)

A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
[Crossref]

1988 (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

1984 (1)

R. Courths and S. Hüfner, “Photoemission experiments on copper,” Phys. Rep. 112(2), 53–171 (1984).
[Crossref]

Agostini, P.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Augé, F.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Azzeer, A. M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Balcou, Ph.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Baltuška, A.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Barth, J. V.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

Blümel, L.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Bothschafter, E. M.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Breger, B.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Burgdorfer, J.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Burgdörfer, J.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Caillat, J.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Castiglioni, L.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Cavalieri, A. L.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Cederbaum, L. S.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Chang, Z.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Cirelli, C.

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Corkum, P. B.

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Courths, R.

R. Courths and S. Hüfner, “Photoemission experiments on copper,” Phys. Rep. 112(2), 53–171 (1984).
[Crossref]

Dahlström, J. M.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Djurišic, A. B.

Drescher, M.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Dudovich, N.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Echenique, P. M.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Elazar, J. M.

Ernstorfer, R.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Feist, J.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Ferray, M.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Feulner, P.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

Fieß, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Fordell, T.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Gagnon, J.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
[Crossref]

Gallmann, L.

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Gisselbrecht, M.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Goulielmakis, E.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
[Crossref]

Greene, C. H.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Greif, M.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Guénot, D.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Heinzmann, U.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Hendel, S.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Hengsberger, M.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Hofstetter, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Holzwarth, R.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Horvath, B.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Hüfner, S.

R. Courths and S. Hüfner, “Photoemission experiments on copper,” Phys. Rep. 112(2), 53–171 (1984).
[Crossref]

Itatani, J.

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Ivanov, M.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Ivanov, M. Yu

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Johnsson, P.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Karpowicz, N.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Keller, U.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Kienberger, R.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Kleineberg, U.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Kling, M. F.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Klünder, K.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Komninos, Y.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Korbman, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Krausz, F.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Kulander, K. C.

A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
[Crossref]

L’Huillier, A.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Leone, S. R.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

LHuillier, A.

A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
[Crossref]

Li, X. F.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Locher, R.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Loh, Z.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Lomprk, L. A.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Lucchini, M.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Mainfray, G.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Mairesse, Y.

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005).
[Crossref]

Majewski, M. L.

Manus, C.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Maquet, A.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Mauritsson, J.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

McCurdy, C. W.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Menzel, D.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

Mercouris, Th.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Muller, H. G.

H. G. Muller, “Reconstruction of attosecond harmonic beating by interference of two-photon transitions,” Appl. Phys. B 74, s17–s21 (2002).
[Crossref]

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Müller, N.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Mullot, G.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Nagele, S.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Neppl, S.

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Nicolaides, C. A.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Osterwalder, J.

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Paul, P. M.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Pazourek, R.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Pfeifer, T.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Pfeiffer, A. N.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Quéré, F.

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005).
[Crossref]

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Rakic, A. D.

Reider, G.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Santra, R.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Schafer, K.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Schafer, K. J.

A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
[Crossref]

Schmidt, B.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Schultze, M.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Spielmann, C.

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Stolow, A.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Swoboda, M.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Taïeb, R.

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Thumm, U.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Toma, E. S.

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

Uphues, Th.

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Vrakking, M. J. J.

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Yakovlev, V. S.

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
[Crossref]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Yudin, G. L.

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Ann. Rev. Phys. Chem. (1)

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25 (2008).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

H. G. Muller, “Reconstruction of attosecond harmonic beating by interference of two-photon transitions,” Appl. Phys. B 74, s17–s21 (2002).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprk, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).
[Crossref]

Nat. Photonics (1)

S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ’real time’?” Nat. Photonics 8, 162–166 (2014).
[Crossref]

Nature (2)

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature,  414, 509–513 (2001).
[Crossref] [PubMed]

A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029 (2007).
[Crossref] [PubMed]

Phys. Rep. (1)

R. Courths and S. Hüfner, “Photoemission experiments on copper,” Phys. Rep. 112(2), 53–171 (1984).
[Crossref]

Phys. Rev. A (1)

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005).
[Crossref]

Phys. Rev. Lett. (4)

S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner, “Attosecond time-resolved photoemission from core and valence states of magnesium,” Phys. Rev. Lett. 109, 087401 (2012).
[Crossref] [PubMed]

K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, “Probing single-photon ionization on the attosecond time scale,” Phys. Rev. Lett. 106, 143002 (2011).
[Crossref] [PubMed]

J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

A. LHuillier, K. J. Schafer, and K. C. Kulander, “Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200 (1991).
[Crossref]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Science (2)

P. M. Paul, E. S. Toma, B. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[Crossref] [PubMed]

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).
[Crossref] [PubMed]

Other (1)

R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, “Attosecond interferometry unravels complex delays in photoemission from solids,” arXiv:1403.5449 [cond-mat.other].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Solution of the classical electron trajectories for a set of electrons photo-emitted from an argon atom by an attosecond pulse in the presence of an IR field at delay τ = 0 fs. (a) Trajectories of selected electrons emitted in the positive y direction. (b) Velocities as a function of time. Parameters used in the calculations: XUV time duration 300 as, center wavelength equal to the 21st harmonic of the fundamental IR beam with wavelength λ0 = 796 nm. The time duration of the IR pulse is 12 fs and the intensity is 5×1011 W/cm2.

Fig. 2
Fig. 2

(a) and (b), calculated intensity and phase of the photoelectrons as a function of delay τ between IR and XUV pulse, respectively. Positive delays means that the IR pulse arrives later than the XUV pulse. Calculation parameters are the same as in Fig. 1. The quantum phase in (b) has been evaluated by Eq. (7).

Fig. 3
Fig. 3

Spectra of two different APTs (red lines) calculated starting from the spectrum of the SAP (black lines) as described in Eqs. (10), (11) and (13). Parameters used in the calculations: (a) σ = 300 as, σenv = 6 fs; (c) σ = 250 as, σenv = 2 fs (see Eqs. (2) and (11)). (b), (d) show the temporal behavior obtained by inverse Fourier transform of the red spectra in (a), (c) respectively.

Fig. 4
Fig. 4

(a) RABBITT trace obtained with the procedure described in the text starting from the SAP response of Fig. 2 and assuming an APT as the one in fig. 3(a)-(b). (b) comparison between the delay evolution of SB 22 at 18.2 eV extracted from the RABBITT trace calculated with the analytical formula of Eq. (2) in [15] (black curve) and extracted from the spectrogram in (a) (red-dashed curve).

Fig. 5
Fig. 5

(a) Reflection and refraction of a p-polarized light beam at a metal surface. The arrows indicate the positive direction chosen for the vectorial quantities under investigation. (b) Intensity map of the IR transient grating for the instant of time t = 0 fs and an incident angle δi = 45°. The field distribution is calculated with Eq. (17) for an IR field reflected on a perfect copper surface. Parameters used in the calculation: center wavelength λ0 = 786 nm, pulse duration: 10 fs, σs: 70 μm and an intensity of 5 × 1011 W/cm2. The red arrows show the direction and magnitude of the total electric field for selected points in space.

Fig. 6
Fig. 6

(a)–(c), calculated RABBITT traces for electrons with final angle θ′fin in a 10°-wide full acceptance angle centered at an angle γ = 75°, 45° and 5°, respectively. The APT is the same as Fig. 3(a)–(b). IR field parameters used in the calculations: same as Fig. 5(b).

Fig. 7
Fig. 7

(a) Fitting of SB 20 for three selected values of detection angle γ. The oscillating trace moves towards positive pump-probe delays for decreasing detection angles, which means a smaller measured phase φ m ( 2 q ) . b) Behavior of the reflection phase φ R ( 2 q ) as a function of detection angle γ and SB order. For small angles (close to normal emission condition), the reflection phase equals half of the Fresnel phase, φFre/2 (black dot-dashed line), while it approaches φFre/2+π/2 (red dashed line) for bigger angles when the influence of the x-component of the IR total field becomes stronger. The error bars in (b) represent the confidence interval of the fitting procedure on the retrieved phase.

Fig. 8
Fig. 8

Behavior of the “geometry coefficient” α (Eq. (29)) as a function of the detection angle γ extracted from the reflection phases φ R ( 2 q ) of Fig. 7(b). Close to normal emission the reflection phase is almost half of the Fresnel phase and therefore α becomes ≃2. Electrons emitted parallel to the surface acquire a bigger phase during the interaction with the IR transient grating and thus α decreases.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

E SAP ( t ) = e t 2 2 σ 2 cos ( ω c t )
E ^ SAP ( ω ) = 1 2 2 π σ e σ 2 2 ( ω ω c ) 2 .
d 2 d t 2 y ( t ) = e m e E y I R ( y , t τ ) , t t i o n
E I R ( y , t ) = E y I R ( y , t ) u y = E 0 e y 2 2 σ s 2 e t 2 2 σ t 2 cos ( ω 0 t φ i n ) u y
φ ( v f , τ ) = t i o n ( v f A ( r , t τ ) + A 2 ( r , t τ ) 2 ) d t ,
p ( r , t ) = v f + A ( r , t ) .
φ ( v f , τ ) = t i o n ( p ( r , t τ ) A ( r , t τ ) A 2 ( r , t τ ) 2 ) d t .
SAP ( v f , τ ) S ( v f , τ ) e i φ ( v f , τ ) .
E APT ( t ) = G ( t ) P ( t ) ,
E ^ APT ( ω ) = F { E APT ( t ) } = F { G ( t ) P ( t ) } = G ^ ( ω ) P ^ ( ω ) .
G ^ ( ω ) = 1 2 2 π σ e n v e σ e n v 2 ω 2 2 .
P ^ ( ω ) = F { P ( t ) } = F { n = + p ( t n T 2 ) } = n = + F { p ( t n T 2 ) }
= n = + p ^ ( ω ) e i ω n T 2 ,
P ^ ( ω , τ ) = n = + SAP ( ω , τ n T 2 ) e i ω n T 2 e i n π .
P ^ ( ω , τ ) = n = + SAP ( ω , τ n T 2 ) e i ( ω ω 0 ) n T 2
E I R ( x , y , t τ ) = E i n I R ( x , y , t τ ) + E out I R ( x , y , t τ ) ,
{ E i n I R ( x , y , t τ ) = E i n e ( u i n r ) 2 2 σ s 2 e ( u i n r / c t ) 2 2 σ t 2 cos ( k i n r ω 0 t + φ i n ) u i n E out I R ( x , y , t τ ) = E out e ( u out r ) 2 2 σ s 2 e ( u out r / c ( t β ) ) 2 2 σ t 2 cos ( k out r ω 0 t + φ out ) u out .
A out ( ω ) A out ( ω 0 ) = A i n | r p ( ω 0 , δ i ) |
φ out ( ω ) = φ i n + arg { r p ( ω , δ i ) } φ i n + β ω + β 0 ,
r p ( ω , δ i ) = n ˜ 2 ( ω ) 2 cos ( δ i ) n ˜ 1 ( ω ) n ˜ 2 ( ω ) 2 n ˜ 1 ( ω ) 2 sin 2 ( δ i ) n ˜ 2 ( ω ) 2 cos ( δ i ) + n ˜ 1 ( ω ) n ˜ 2 ( ω ) 2 n ˜ 1 ( ω ) 2 sin 2 ( δ i ) .
{ 2 t 2 x ( t ) = e m e E x I R ( x , y , t τ ) 2 t 2 y ( t ) = e m e E y I R ( x , y , t τ ) ,
{ E x I R = ( E i n I R E out I R ) cos ( δ i ) E y I R = ( E i n I R + E out I R ) sin ( δ i )
A i n = C i n t e ( a c t ) 2 b 2 cos ( d ω 0 t ) d t = C i n b 4 c e ( i d + ω 0 ( 4 i a c + b 2 ω 0 ) 4 c 2 ) π { e 2 i d [ 1 Erf ( 2 c ( a c t ) i b 2 ω 0 2 b c ) ] +
+ e 2 i a ω 0 c [ 1 Erf ( 2 c ( a c t ) i b 2 ω 0 2 b c ) ] } ,
{ v x i n = 2 m e h v + E b E b v b c o s ( θ ) v y i n = 2 m e sin 2 ( θ ) [ h v + E b ] + c o s 2 ( θ ) E b v b
SAP ( ω , τ , θ f i n ) = θ ( v i n ( S ( v i n , τ , θ ) e i φ ( v i n , τ , θ ) ) sin ( θ ) )
S B ( 2 q ) ( τ ) = [ a 1 cos 2 ( ω 0 ( τ a 3 ) + φ i n + φ ( 2 q ) 2 ) + a 2 ] e ( τ a 3 a 4 ) 2 + a 5
φ R ( 2 q ) = φ F r e ( 2 q ) 2 β ω 0 + β 0 2
φ R ( 2 q ) φ F r e α ( γ )

Metrics