Abstract

We demonstrate two complementary optical separation techniques of dielectric particles on the surface of silicon nitride waveguides. Glass particles ranging from 2 μm to 10 μm in diameter are separated at guided powers below 40 mW. The effects of optical, viscous, and frictional forces on the particles are modeled and experimentally shown to enable separation. Particle interactions are investigated and shown to decrease measured particle velocity without interfering with the overall particle separation distribution. The demonstrated separation techniques have the potential to be integrated with microfluidic structures for cell sorting.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical manipulation of microparticles and cells on silicon nitride waveguides

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard
Opt. Express 13(18) 6956-6963 (2005)

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson
Opt. Express 15(22) 14322-14334 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
    [Crossref] [PubMed]
  3. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
    [Crossref]
  4. P. Jákl, A. V. Arzola, M. Šiler, L. Chvátal, K. Volke-Sepúlveda, and P. Zemánek, “Optical sorting of nonspherical and living microobjects in moving interference structures,” Opt. Express 22(24), 29746–29760 (2014).
    [Crossref] [PubMed]
  5. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [Crossref] [PubMed]
  6. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
    [Crossref]
  7. A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
    [Crossref] [PubMed]
  8. H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4–6), 373–383 (2005).
    [Crossref]
  9. S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [Crossref] [PubMed]
  10. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [Crossref] [PubMed]
  11. K. D. Leake, B. S. Phillips, T. D. Yuzvinsky, A. R. Hawkins, and H. Schmidt, “Optical particle sorting on an optofluidic chip,” Opt. Express 21(26), 32605–32610 (2013).
    [Crossref] [PubMed]
  12. S. Lin and K. B. Crozier, “An integrated microparticle sorting system based on near-field optical forces and a structural perturbation,” Opt. Express 20(4), 3367–3374 (2012).
    [Crossref] [PubMed]
  13. B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
    [Crossref]
  14. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  15. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
    [Crossref]
  16. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [Crossref] [PubMed]
  17. J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
    [Crossref] [PubMed]
  18. L. P. Faucheux and A. J. Libchaber, “Confined brownian motion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5158–5163 (1994).
    [Crossref] [PubMed]
  19. R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
    [Crossref]
  20. T. L. Cail and M. F. Hochella., “Experimentally derived sticking efficiencies of microparticles using atomic force microscopy,” Environ. Sci. Technol. 39(4), 1011–1017 (2005).
    [Crossref] [PubMed]
  21. J. S. Punrath and D. R. Heldman, “Mechanisms of small particle re-entrainment from flat surfaces,” J. Aerosol Sci. 3(6), 429–440 (1972).
    [Crossref]
  22. B. Chu, Laser Light Scattering (Academic Press, 1974).
  23. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
    [Crossref]

2014 (3)

P. Jákl, A. V. Arzola, M. Šiler, L. Chvátal, K. Volke-Sepúlveda, and P. Zemánek, “Optical sorting of nonspherical and living microobjects in moving interference structures,” Opt. Express 22(24), 29746–29760 (2014).
[Crossref] [PubMed]

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

2013 (2)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

K. D. Leake, B. S. Phillips, T. D. Yuzvinsky, A. R. Hawkins, and H. Schmidt, “Optical particle sorting on an optofluidic chip,” Opt. Express 21(26), 32605–32610 (2013).
[Crossref] [PubMed]

2012 (2)

S. Lin and K. B. Crozier, “An integrated microparticle sorting system based on near-field optical forces and a structural perturbation,” Opt. Express 20(4), 3367–3374 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

2010 (2)

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (2)

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
[Crossref] [PubMed]

2005 (4)

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4–6), 373–383 (2005).
[Crossref]

S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[Crossref] [PubMed]

K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[Crossref] [PubMed]

T. L. Cail and M. F. Hochella., “Experimentally derived sticking efficiencies of microparticles using atomic force microscopy,” Environ. Sci. Technol. 39(4), 1011–1017 (2005).
[Crossref] [PubMed]

2004 (1)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

1996 (1)

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
[Crossref]

1994 (1)

L. P. Faucheux and A. J. Libchaber, “Confined brownian motion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5158–5163 (1994).
[Crossref] [PubMed]

1972 (1)

J. S. Punrath and D. R. Heldman, “Mechanisms of small particle re-entrainment from flat surfaces,” J. Aerosol Sci. 3(6), 429–440 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ahluwalia, B. S.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

Arzola, A. V.

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Baets, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Bhagat, A. A. S.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Block, S. M.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
[Crossref]

Bow, H.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Cail, T. L.

T. L. Cail and M. F. Hochella., “Experimentally derived sticking efficiencies of microparticles using atomic force microscopy,” Environ. Sci. Technol. 39(4), 1011–1017 (2005).
[Crossref] [PubMed]

Chapin, S. C.

Chatelain, F.

Chen, J.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

Chen, X.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

Chvátal, L.

Claes, T.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Colas, G.

Crozier, K. B.

Dérouard, J.

Deshpande, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

DuBois, B.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dufresne, E. R.

Erickson, D.

Faucheux, L. P.

L. P. Faucheux and A. J. Libchaber, “Confined brownian motion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5158–5163 (1994).
[Crossref] [PubMed]

Fedeli, J.

Fuchs, A.

Fuchs, R.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Gaugiran, S.

Germain, V.

Gétin, S.

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
[Crossref]

Grujic, K.

K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[Crossref] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

Han, J.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Hawkins, A. R.

Heldman, D. R.

J. S. Punrath and D. R. Heldman, “Mechanisms of small particle re-entrainment from flat surfaces,” J. Aerosol Sci. 3(6), 429–440 (1972).
[Crossref]

Helin, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Hellesø, O.

Hellesø, O. G.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4–6), 373–383 (2005).
[Crossref]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

Hochella, M. F.

T. L. Cail and M. F. Hochella., “Experimentally derived sticking efficiencies of microparticles using atomic force microscopy,” Environ. Sci. Technol. 39(4), 1011–1017 (2005).
[Crossref] [PubMed]

Hole, J.

Hole, J. P.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

Hou, H. W.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Jaising, H. Y.

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4–6), 373–383 (2005).
[Crossref]

Jákl, P.

Jansen, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Jiang, X.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Leake, K. D.

Leyssens, K.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Libchaber, A. J.

L. P. Faucheux and A. J. Libchaber, “Confined brownian motion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5158–5163 (1994).
[Crossref] [PubMed]

Lim, C. T.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Lin, S.

Lipson, M.

Luding, S.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Meyer, J.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Neutens, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Peyskens, F.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Phillips, B. S.

Poon, A. W.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Punrath, J. S.

J. S. Punrath and D. R. Heldman, “Mechanisms of small particle re-entrainment from flat surfaces,” J. Aerosol Sci. 3(6), 429–440 (1972).
[Crossref]

Ramos-García, R.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Ricárdez-Vargas, I.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Rodríguez-Montero, P.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Rottenberg, X.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Schmidt, B. S.

Schmidt, H.

Selvaraja, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Severi, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Šiler, M.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Staedler, T.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Subramanian, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Subramanian, A. Z.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

Tan, S. J.

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Van Dorpe, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
[Crossref]

Volke-Sepúlveda, K.

P. Jákl, A. V. Arzola, M. Šiler, L. Chvátal, K. Volke-Sepúlveda, and P. Zemánek, “Optical sorting of nonspherical and living microobjects in moving interference structures,” Opt. Express 22(24), 29746–29760 (2014).
[Crossref] [PubMed]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Wang, J.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

Weinhart, T.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Wilkinson, J.

Wilkinson, J. S.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

Yang, A. H.

Yuzvinsky, T. D.

Zemánek, P.

Zhuang, H.

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

Appl. Phys. Lett. (1)

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Environ. Sci. Technol. (1)

T. L. Cail and M. F. Hochella., “Experimentally derived sticking efficiencies of microparticles using atomic force microscopy,” Environ. Sci. Technol. 39(4), 1011–1017 (2005).
[Crossref] [PubMed]

Granul. Matter (1)

R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, and S. Luding, “Rolling, sliding & torsion of micron-sized silica particles: experimental, numerical and theoretical analysis,” Granul. Matter 16(3), 281–297 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996).
[Crossref]

IEEE Photon. J. (1)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

J. Aerosol Sci. (1)

J. S. Punrath and D. R. Heldman, “Mechanisms of small particle re-entrainment from flat surfaces,” J. Aerosol Sci. 3(6), 429–440 (1972).
[Crossref]

Lab Chip (2)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48(10), 999–1014 (2010).
[Crossref] [PubMed]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4–6), 373–383 (2005).
[Crossref]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4–6), 227–235 (2004).
[Crossref]

Opt. Express (7)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. P. Faucheux and A. J. Libchaber, “Confined brownian motion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5158–5163 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. SPIE (1)

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. S. Wilkinson, J. Chen, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[Crossref]

Other (1)

B. Chu, Laser Light Scattering (Academic Press, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

3D waveguide simulation geometry for a 10-μm silicon nitride strip waveguide and glass particle submerged in water.

Fig. 2
Fig. 2

Particle trajectories at different guided powers. Note the discrepancy in the position of the particles with time between the two separation methods. (a) Particle trajectories at guided power of 1 mW. Smaller particles have enough force to move slowly down the waveguide, while larger particles move a small distance and come to a gradual stop. (b) Particle trajectories at guided power of 40 mW. All particles are moving at terminal velocity down the waveguide and have segregated from largest to smallest along the waveguide based on velocities.

Fig. 3
Fig. 3

AFM Image of Si3N4 waveguide. RMS roughness is 2.6 on the surface of the waveguide.

Fig. 4
Fig. 4

Effects of single particle collisions

Fig. 5
Fig. 5

Effects of single and multiple particle collisions

Fig. 6
Fig. 6

Representative still recording of a particle collision event. The laser is turned on at time t = 0. The series of pictures documents the interaction between a 10-μm and 2-μm particle at a guided power of 10 mW. The 10-μm particle is stationary while the 2-μm particle is propelled forward by the optical force.

Fig. 7
Fig. 7

A heterogeneous mixture of 2-10-μm particles and their terminal velocity at various input powers. At each set of guided powers, particles that are not displayed on the graph are stationary at the beginning of the waveguide.

Fig. 8
Fig. 8

Distribution of particle separation for glass particles of varying size subject to a guided power of 38 mW. Particles reach separation distance in 30 seconds.

Fig. 9
Fig. 9

Theoretical results for 2-μm and 4-μm particle sizes based on force model. Particle interactions were not taken into account.

Fig. 10
Fig. 10

(a) Theoretical results from Fig. 9 combined with decrease in velocity from multiple particle collisions. (b) Experimental results for 2-μm and 4-μm particles. Particle interactions were present in the system.

Tables (1)

Tables Icon

Table 1 Relationship between optical forces and particle diameters from COMSOL simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m d 2 x d t 2 = F p + F s + F D + F f
F D =6πηRv(t)
F f,rolling = μ ro (βmg+ F g + h ro )
F s (x)= F s0 (x+ x 0 ) 2

Metrics