Abstract

Based on a full-wave nonlocal Mie theory, we establish the spaser generation condition for compact plasmonic nanolasers in the long-wavelength limit for dielectric-metal core-shell nanoparticles. We found that there exist two lasing states arising from the hybridized antibonding and bonding modes for this coated nanolaser. By varying the surrounding medium and the gain materials, we can achieve low gain threshold for each mode with flexible radii ratios on the purpose of realistic easy fabrication. Numerical results show that nonlocal effects have different influences on the required gain threshold and gain refractive index of these two lasing modes, which may be of great importance in the design of such kind of ultrasmall nanoparticle lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell

J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang
Opt. Lett. 37(7) 1181-1183 (2012)

Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation

D. G. Baranov, E.S. Andrianov, A. P. Vinogradov, and A. A. Lisyansky
Opt. Express 21(9) 10779-10791 (2013)

Near-infrared hybrid plasmonic multiple quantum well nanowire lasers

Jiamin Wang, Wei Wei, Xin Yan, Jinnan Zhang, Xia Zhang, and Xiaomin Ren
Opt. Express 25(8) 9358-9367 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. N. M. Lawandy, “Subwavelength lasers,” Appl. Phys. Lett. 90(14), 143104 (2007).
    [Crossref]
  4. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
    [Crossref]
  5. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
    [Crossref]
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  7. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
    [Crossref] [PubMed]
  8. J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang, “Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell,” Opt. Lett. 37(7), 1181–1183 (2012).
    [Crossref] [PubMed]
  9. N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
    [Crossref]
  10. S. Y. Liu, J. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
    [Crossref] [PubMed]
  11. X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
    [Crossref] [PubMed]
  12. X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).
  13. D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
    [Crossref] [PubMed]
  14. D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
    [Crossref] [PubMed]
  15. R. Ruppin, “Optical properties of a plasma sphere,” Phys. Rev. Lett. 31(24), 1434–1437 (1973).
    [Crossref]
  16. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  17. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
    [Crossref] [PubMed]
  18. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
    [Crossref] [PubMed]
  19. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
    [Crossref] [PubMed]
  20. C. David and F. J. G. de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011).
    [Crossref]
  21. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  22. G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
    [Crossref] [PubMed]
  23. G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
    [Crossref] [PubMed]
  24. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
    [Crossref] [PubMed]
  25. Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
    [Crossref] [PubMed]
  26. Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
    [Crossref]
  27. Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
    [Crossref]
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  29. S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
    [Crossref]
  30. G. S. Agarwal and S. V. Oneil, “Effect of hydrodynamic dispersion of the metal on surface-plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28(2), 487–493 (1983).
    [Crossref]
  31. V. V. Datsyuk, “A generalization of the Mie theory for a sphere with spatially dispersive permittivity,” Ukr. J. Phys. 56, 122–129 (2011).
  32. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
    [Crossref]
  33. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  34. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).
  35. Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10(1), 243–249 (2010).
    [Crossref] [PubMed]
  36. S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
    [Crossref]

2014 (1)

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

2013 (9)

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
[Crossref] [PubMed]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

2012 (10)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang, “Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell,” Opt. Lett. 37(7), 1181–1183 (2012).
[Crossref] [PubMed]

N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
[Crossref]

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

2011 (4)

C. David and F. J. G. de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011).
[Crossref]

V. V. Datsyuk, “A generalization of the Mie theory for a sphere with spatially dispersive permittivity,” Ukr. J. Phys. 56, 122–129 (2011).

S. Y. Liu, J. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

2010 (2)

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
[Crossref] [PubMed]

Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10(1), 243–249 (2010).
[Crossref] [PubMed]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
[Crossref] [PubMed]

2008 (1)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

2007 (1)

N. M. Lawandy, “Subwavelength lasers,” Appl. Phys. Lett. 90(14), 143104 (2007).
[Crossref]

2003 (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

1999 (1)

1983 (1)

G. S. Agarwal and S. V. Oneil, “Effect of hydrodynamic dispersion of the metal on surface-plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28(2), 487–493 (1983).
[Crossref]

1973 (1)

R. Ruppin, “Optical properties of a plasma sphere,” Phys. Rev. Lett. 31(24), 1434–1437 (1973).
[Crossref]

Agarwal, G. S.

G. S. Agarwal and S. V. Oneil, “Effect of hydrodynamic dispersion of the metal on surface-plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28(2), 487–493 (1983).
[Crossref]

Aizpurua, J.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Aubry, A.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Averitt, R. D.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Baranov, D. G.

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Bian, X.

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Borisov, A. G.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Burrows, A.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Calander, N.

N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
[Crossref]

Campbell, S. D.

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

Chen, J.

Chen, Z.

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Datsyuk, V. V.

V. V. Datsyuk, “A generalization of the Mie theory for a sphere with spatially dispersive permittivity,” Ukr. J. Phys. 56, 122–129 (2011).

David, C.

C. David and F. J. G. de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011).
[Crossref]

de Abajo, F. J. G.

C. David and F. J. G. de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011).
[Crossref]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

Fischer, S. V.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Fujita, K.

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Gan, L.

Gao, L.

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Goldys, E. M.

N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
[Crossref]

Gray, S. K.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
[Crossref] [PubMed]

Guler, U.

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Jauho, A. P.

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Jin, D. Y.

N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
[Crossref]

Kadkhodazadeh, S.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Kildishev, A. V.

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Kostesha, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Lawandy, N. M.

N. M. Lawandy, “Subwavelength lasers,” Appl. Phys. Lett. 90(14), 143104 (2007).
[Crossref]

Li, D.

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

Li, J.

Li, X. F.

Li, Z. Y.

S. Y. Liu, J. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10(1), 243–249 (2010).
[Crossref] [PubMed]

Lisyansky, A. A.

Liu, S. Y.

Luo, Y.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

Maier, S. A.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
[Crossref] [PubMed]

Meng, X.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Meng, X. G.

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

Miroshnichenko, A. E.

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ni, Y. X.

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nordlander, P.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oneil, S. V.

G. S. Agarwal and S. V. Oneil, “Effect of hydrodynamic dispersion of the metal on surface-plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28(2), 487–493 (1983).
[Crossref]

Pan, J.

Pendry, J. B.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Raza, S.

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Ruppin, R.

R. Ruppin, “Optical properties of a plasma sphere,” Phys. Rev. Lett. 31(24), 1434–1437 (1973).
[Crossref]

Schatz, G. C.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Stenger, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Stockman, M. I.

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Strelniker, Y. M.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tanaka, K.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

Tang, C. J.

Teperik, T. V.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

Toscano, G.

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Vinogradov, A. P.

Wang, Z. L.

Westcott, S. L.

Wiener, A.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wubs, M.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett. 37(13), 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Xia, Y.

Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10(1), 243–249 (2010).
[Crossref] [PubMed]

Xiao, S.

Yu, S. F.

Zhan, P.

Zhou, F.

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ziolkowski, R. W.

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

Appl. Phys. Lett. (1)

N. M. Lawandy, “Subwavelength lasers,” Appl. Phys. Lett. 90(14), 143104 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (3)

N. Calander, D. Y. Jin, and E. M. Goldys, “Taking plasmonic core-shell nanoparticles toward Laser threshold,” J. Phys. Chem. C 116(13), 7546–7551 (2012).
[Crossref]

C. David and F. J. G. de Abajo, “Spatial Nonlocality in the Optical Response of Metal Nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Nano Lett. (3)

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of Three-Dimensional Nanocrescent Light Harvesters,” Nano Lett. 12(11), 5946–5953 (2012).
[Crossref] [PubMed]

Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10(1), 243–249 (2010).
[Crossref] [PubMed]

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Nanophotonics-Berlin (1)

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics-Berlin 2(2), 131–138 (2013).

Nat. Commun. (1)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

Y. Huang, X. Bian, Y. X. Ni, A. E. Miroshnichenko, and L. Gao, “Nonlocal surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 89(5), 053824 (2014).
[Crossref]

Phys. Rev. B (1)

G. S. Agarwal and S. V. Oneil, “Effect of hydrodynamic dispersion of the metal on surface-plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28(2), 487–493 (1983).
[Crossref]

Phys. Rev. Lett. (6)

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103(9), 097403 (2009).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

R. Ruppin, “Optical properties of a plasma sphere,” Phys. Rev. Lett. 31(24), 1434–1437 (1973).
[Crossref]

Plasmonics (1)

S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013).
[Crossref]

Sci. Rep-Uk (1)

X. G. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity,” Sci. Rep-Uk 3, 01241 (2013).

Science (3)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Ukr. J. Phys. (1)

V. V. Datsyuk, “A generalization of the Mie theory for a sphere with spatially dispersive permittivity,” Ukr. J. Phys. 56, 122–129 (2011).

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Extinction efficiency of the coated nanolasers with three different descriptions: nonlocal plasmonic shell with size-dependent damping (red), nonlocal plasmonic shell without size-dependent damping (green), and local plasmonic shell with size-dependent damping (black). The insert in the middle gives the schematic of the core-shell nanolaser with outer radius r s =20nm and inner radius r s / r c =2.01 . n G and n b are chosen as 1.5 and 1 respectively. The inserts around the two peaks show the corresponding near-field patterns
Fig. 2
Fig. 2 Resonant optical scattering Q sca (red), absorption Q abs (blue), and extinction Q ext (black) cross section efficiencies as a function of the gain coefficient G with an excitation wavelength of 327.1nm . Maximal value for Q sca takes place at G=10.3× 10 4 cm 1 . Parameters are the same as those in Fig. 1.
Fig. 3
Fig. 3 Extinction efficiencies of the coated particles with: (a) a refractive index n G =1.52 for the gain core and various host medium n b =1 (black), n b =1.2 (red) and n b =1.52 (blue); (b) a host medium n b =1.52 and various gain refractive index of gain core n G =1.52 (blue) and n G =3.25 (pink) at the zero gain. The inserted data denote the gain thresholds (unit: cm 1 ) for each resonant modes correspondingly. All the outer radii are fixed as r s =20nm and the radii ratios η=2.01 .
Fig. 4
Fig. 4 Images of Re( n G ) and G th in the plane of λ and η with n b =1 [(a) and (d)], n b =1.52 [(b) and (e)] and n b =3.25 [(c) and (f)] respectively. The positions where Re( n G )1.52 and Re( n G )3.25 are indicated by black dots.
Fig. 5
Fig. 5 Images of δ and ξ in the plane of λ and η with n b =1 [(a) and (d)], n b =1.52 [(b) and (e)] and n b =3.25 [(c) and (f)] respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε T (ω)= ε g - ω p 2 ω(ω+iγ) , ε L (ω,k)= ε g - ω p 2 ω(ω+iγ) β 2 k 2 ,
E I = E 0 e iωt n=1 i n 2n+1 n(n+1) {×[ r j n ( k b r) P n (1) (cosθ)sinϕ] i 1 k b ××[ r j n ( k b r) P n (1) (cosθ)cosϕ]},
E R = E 0 e iωt n=1 i n 2n+1 n(n+1) {×[ r b n R h n ( k b r) P n (1) (cosθ)sinϕ] i 1 k b ××[ r a n R h n ( k b r) P n (1) (cosθ)cosϕ]},
E T = E 0 e iωt n=1 i n 2n+1 n(n+1) { ×[ r [ a n TM j n ( k T r)+ b n TM y n ( k T r)] P n (1) (cosθ)sinϕ] i 1 k T ××[ r [ a n TE j n ( k T r)+ b n TE y n ( k T r)] P n (1) (cosθ)cosϕ] }
E L = E 0 e iωt n=1 i n 2n+1 n(n+1) 1 k L { [ a n L j n ( k L r)+ b n L y n ( k L r)] P n (1) (cosθ)cosϕ },
E C = E 0 e iωt n=1 i n 2n+1 n(n+1) {×[ r a n C j n ( k G r) P n (1) (cosθ)sinϕ] i 1 k G ××[ r b n C j n ( k G r) P n (1) (cosθ)cosϕ]},
a n R = N n D n ,
D n =| [ k b r s h n ( k b r s )] ' k b r s [ k T r s j n ( k T r s )] ' k T r s [ k T r s y n ( k T r s )] ' k T r s j n ( k L b) k L b y n ( k L b) k L b 0 k b h n ( k b r s )] k T j n ( k T r s ) k T y n ( k T r s ) 0 0 0 0 U n j ( k T r s ) U n y ( k T r s ) ε g j n ' ( k L r s ) ε g y n ' ( k L r s ) 0 0 [ k T r c j n ( k T r c )] ' k T r c [ k T r c y n ( k T r c )] ' k T r c j n ( k L r c ) k L r c y n ( k L r c ) k L r c [ k G r c j n ( k G r c )] ' k G r c 0 k T j n ( k T r c ) k T y n ( k T r c ) 0 0 k G j n ( k G r c ) 0 U n j ( k T r c ) U n y ( k T r c ) ε g j n ' ( k L r c ) ε g y n ' ( k L r c ) 0 |,
b n R = | j n ( k b r s ) j n ( k T r s ) y n ( k T r s ) 0 [ k b r s j n ( k b r s )] ' [ k T r s j n ( k T r s )] ' [ k T r s y n ( k T r s )] ' 0 0 j n ( k T r c ) y n ( k T r c ) j n ( k G r c ) 0 [ k T r c j n ( k T r c )] ' [ k T r c y n ( k T r c )] ' [ k G r c j n ( k G r c )] ' | | h n ( k b r s ) j n ( k T r s ) y n ( k T r s ) 0 [ k b r s h n ( k b r s )] ' [ k T r s j n ( k T r s )] ' [ k T r s y n ( k T r s )] ' 0 0 j n ( k T r c ) y n ( k T r c ) j n ( k G r c ) 0 [ k T r c j n ( k T r c )] ' [ k T r c y n ( k T r c )] ' [ k G r c j n ( k G r c )] ' |
Q ext = 2 k b 2 r s 2 n=1 (2n+1)Re( a n R + b n R ) Q sca = 2 k b 2 r s 2 n=1 (2n+1)( | a n R | 2 + | b n R | 2 ) Q abs = Q ext Q sca .
η 3 = 2 G c s [(1+2 F s j ) ε b ε T ][(1 F c y ) ε G ε T ] 2 G s c [(1+2 F s y ) ε b ε T ][(1 F c j ) ε G ε T ]6 V c ε b ε G G c s [2(1 F s j ) ε b + ε T ][(1+2 F c y ) ε G +2 ε T ] G s c [2(1 F s y ) ε b + ε T ][(1+2 F c j ) ε G +2 ε T ]+6 V s ε b ε G
η 3 = 2( ε T ε b )( ε T ε G ) (2 ε b + ε T )( ε G +2 ε T )

Metrics