Abstract

In this paper, we demonstrate a compact electrically pumped distributed-feedback hybrid III–V/silicon laser with laterally coupled Bragg grating for the first time to the best of our knowledge. The hybrid laser structure consists of AlGaInAs/InP multi-quantum-well gain layers on top of a laterally corrugated silicon waveguide patterned on a silicon on insulator (SOI) substrate. A pair of surface couplers is integrated at the two ends of the silicon waveguide for the optical coupling and characterization of the ouput light. Single wavelength emission of ~1.55µm with a side-mode-suppression- ratio larger than 20dB and low threshold current density of 1.54kA/cm2 were achieved for the device under pulsed operation at 20 °C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli
Opt. Express 19(11) 10317-10325 (2011)

Hybrid III-V semiconductor/silicon nanolaser

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri
Opt. Express 19(10) 9221-9231 (2011)

4–λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects

Yajie Li, Hongyan Yu, Wengyu Yang, Chaoyang Ge, Pengfei Wang, Fangyuan Meng, Guangzhen Luo, Mengqi Wang, Xuliang Zhou, Dan Lu, Guangzhao Ran, and Jiaoqing Pan
Photon. Res. 7(6) 687-692 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  3. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [Crossref] [PubMed]
  4. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
    [Crossref] [PubMed]
  5. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
    [Crossref] [PubMed]
  6. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
    [Crossref]
  7. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
    [Crossref]
  8. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” Proc. of the Opt. Fiber Commun. Conf., San Diego, CA, USA, 2008, Paper OtuM2.
    [Crossref]
  9. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
    [Crossref]
  10. S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
    [Crossref]
  11. R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
    [Crossref]
  12. O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
    [Crossref]
  13. A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
    [Crossref]
  14. A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
    [Crossref]
  15. P. Yeh and A. Yariv, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley and Sons, 2003), pp. 560–575.
  16. R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013).
    [PubMed]
  17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 2.
  18. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38(24), 5434–5437 (2013).
    [Crossref] [PubMed]
  19. S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
    [Crossref] [PubMed]
  20. Y. Zhang, H. Qu, H. Wang, S. Zhang, L. Liu, S. Ma, and W. Zheng, “A hybrid silicon single mode laser with a slotted feedback structure,” Opt. Express 21(1), 877–883 (2013).
    [Crossref] [PubMed]
  21. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]

2013 (6)

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
[Crossref]

Y. Zhang, H. Qu, H. Wang, S. Zhang, L. Liu, S. Ma, and W. Zheng, “A hybrid silicon single mode laser with a slotted feedback structure,” Opt. Express 21(1), 877–883 (2013).
[Crossref] [PubMed]

R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013).
[PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[Crossref] [PubMed]

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38(24), 5434–5437 (2013).
[Crossref] [PubMed]

2012 (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

2011 (3)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[Crossref] [PubMed]

2009 (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

2008 (2)

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

1995 (1)

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Anderson, J. G.

Bagheri, M.

Bolk, J.

Bondarenko, O.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Bordel, D.

Borgentun, C. E.

Bowers, J. E.

Briggs, R. M.

Buus, J.

Chapman, P. F.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Cohen, O.

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

De Vries, T.

Duan, G.-H.

Dumitrescu, M.

A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
[Crossref]

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Fainman, Y.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Fang, A. W.

Fedeli, J. M.

Fedeli, J.-M.

Forouhar, S.

R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013).
[PubMed]

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Frez, C.

Geluk, E. J.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Gu, Q.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Gupta, J. A.

Heck, J. M.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Hunspreger, R. G.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Jany, C.

Jones, R.

Julian, N.

S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
[Crossref]

Karinen, J.

A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
[Crossref]

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kaye, B.

Keo, S.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Keyvaninia, S.

Kuo, Y.-H.

Laakso, A.

A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
[Crossref]

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Lamponi, M.

Lang, R. J.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Le Liepvre, A.

Lelarge, F.

Liang, D.

Liu, L.

Lively, E.

Ma, S.

Make, D.

Martin, R. D.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Messaoudene, S.

Morthier, G.

Murphy, E. J.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Paniccia, M. J.

Park, H.

Pessa, M.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Peters, J.

S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[Crossref] [PubMed]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Qu, H.

Raday, O.

Roelkens, G.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Shane, J.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Simic, A.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Slutsky, B.

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

Smalbrugge, B.

Smit, M.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Srinivasan, S.

S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[Crossref] [PubMed]

Stankovic, S.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Suominen, M.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Sysak, M. N.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Thourhout, D. V.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Tiberio, R.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

Van Landschoot, L.

Van Thourhout, D.

Verstuyft, S.

Viheriälä, J.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Wang, H.

Witinski, M. F.

Zhang, S.

Zhang, Y.

Zheng, W.

Appl. Phys. Lett. (1)

O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

S. Srinivasan, N. Julian, J. Peters, D. Liang, and J. E. Bowers, “Reliability of hybrid silicon distributed feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501305 (2013).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (7)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[Crossref] [PubMed]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[Crossref] [PubMed]

R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013).
[PubMed]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[Crossref] [PubMed]

Y. Zhang, H. Qu, H. Wang, S. Zhang, L. Liu, S. Ma, and W. Zheng, “A hybrid silicon single mode laser with a slotted feedback structure,” Opt. Express 21(1), 877–883 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron. 40(11-12), 907–920 (2008).
[Crossref]

Proc. SPIE (1)

A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332 (2011).
[Crossref]

Other (3)

P. Yeh and A. Yariv, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley and Sons, 2003), pp. 560–575.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 2.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” Proc. of the Opt. Fiber Commun. Conf., San Diego, CA, USA, 2008, Paper OtuM2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the lateral coupled distributed feedback (LC-DFB) grating (without bonded III-V material on top for better illustration), the rectangles in light blue represent SiO2 BOX layer and those in light green represent the silicon material.
Fig. 2
Fig. 2 (a) The Schematic diagram of the cross section of the III-V/silicon laser structure (b) and finite element simulation of fundamental TE mode for the silicon waveguide with a width of 2µm, a depth of 500nm and an interlayer thickness of 10nm.
Fig. 3
Fig. 3 (a) Relationship between the coupling coefficient and grating lateral extension width. The III-V and silicon width are chosen as 12 µm and 2µm, respectively and (b) Calculated wavelength-dependent reflection spectrum of a Bragg grating with the centre Bragg wavelength around 1560 nm in a LC-DFB structure and the grating length of 300 µm, 500 µm, 700µm and 1000µm, respectively. The structure parameters are D = 2 µm, W1 = 1 µm, grating period Λ = 670 nm, dsi = 500 nm, respectively.
Fig. 4
Fig. 4 Schematic diagram of planarization process, including oxide reverse etching and chemical mechanic polishing(CMP).
Fig. 5
Fig. 5 Top-view optical microscope image of the fabricated silicon/III-V laser. The red dash rectangle corresponds to the part of silicon waveguide where there is processed III-V ridge on top. Take note that metal bridge would not absorb too much light with the SiO2 in between the metal and silicon waveguide.
Fig. 6
Fig. 6 The scanning electron microscope (SEM) image of (a) the Bragg grating, and (b)surface coupler ; (c) and (d) are the respective images of (a) and (b) in magnification.
Fig. 7
Fig. 7 (a) Measured light power output versus injection current from one surface coupler withthe calibration of surface couplers and waveguide losses and (b) The laser spectrum under pulsed operation with 1% duty cycle at the injection current of 200mA.
Fig. 8
Fig. 8 Calculated threshold current vs. different coupling strength κL if there is no reflection from the surface coupler. The injection efficiency, material gain and transparent carrier density are set as 0.6, 1500cm−1 and 1x1018 cm3, respectively. Cavity length is 700µm long. For comparison, the measured threshold current is ~130mA, which is much higher than the expected value of ~90mA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ= κ 0 2 2β Δε( x,y ) | E 0 ( x,y ) | 2 dxdy | E 0 ( x,y ) | 2 dxdy
κ= k 0 2 n eff ( n 2 2 ( x,y ) | E 0 ( x,y ) | 2 dxdy | E 0 ( x,y ) | 2 dxdy n 1 2 ( x,y ) | E 0 ( x,y ) | 2 dxdy | E 0 ( x,y ) | 2 dxdy ) sin( πmγ ) πm
κ= k 0 2 n eff ( n eff,2 2 n eff,1 2 ) sin( πmγ ) m 2( n eff,2 n eff,1 ) λ 0 sin( πmγ ) m
R= κ 2 sin h 2 sL s 2 cos h 2 sL+ ( Δβ ) 2 sin h 2 sL

Metrics