Abstract

We present efficient algorithms for rapid reconstruction of quantitative phase maps from off-axis digital holograms. The new algorithms are aimed at speeding up the conventional Fourier-based algorithm. By implementing the new algorithms on a standard personal computer, while using only a single-core processing unit, we were able to reconstruct the unwrapped phase maps from one megapixel off-axis holograms at frame rates of up to 45 frames per second (fps). When phase unwrapping is not required, the same algorithms allow frame rates of up to 150 fps for one megapixel off-axis holograms. In addition to obtaining real-time quantitative visualization of the sample, the increased frame rate allows integrating additional calculations as a part of the reconstruction process, providing sample-related information that was not available in real time until now. We use these new capabilities to extract, for the first time to our knowledge, the dynamic fluctuation maps of red blood cells at frame rate of 31 fps for one megapixel holograms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping

Ohad Backoach, Saar Kariv, Pinhas Girshovitz, and Natan T. Shaked
Opt. Express 24(4) 3177-3188 (2016)

Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing

Pinhas Girshovitz and Natan T. Shaked
Opt. Lett. 39(8) 2262-2265 (2014)

Off-axis quantitative phase imaging processing using CUDA: toward real-time applications

Hoa Pham, Huafeng Ding, Nahil Sobh, Minh Do, Sanjay Patel, and Gabriel Popescu
Biomed. Opt. Express 2(7) 1781-1793 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express 3(8), 1757–1773 (2012).
    [Crossref] [PubMed]
  2. N. Turko, I. Barnea, O. Blum, R. Korenstein, and N. T. Shaked, “Detection and controlled depletion of cancer cells using photothermal phase microscopy,” accepted to J. Biophoton. (2014).
  3. N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
    [Crossref] [PubMed]
  4. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
    [Crossref] [PubMed]
  5. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [PubMed]
  6. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
    [Crossref] [PubMed]
  7. S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).
  8. B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
    [Crossref]
  9. S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).
  10. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).
  11. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
    [Crossref] [PubMed]
  12. P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39(8), 2262–2265 (2014).
    [Crossref] [PubMed]
  13. S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  14. B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37(11), 1868–1870 (2012).
    [Crossref] [PubMed]
  15. Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
    [Crossref]
  16. B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22(19), 23066–23072 (2014).
    [Crossref] [PubMed]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
    [Crossref]
  18. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [Crossref] [PubMed]
  19. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  20. I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
    [Crossref] [PubMed]
  21. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
    [Crossref] [PubMed]
  22. G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
    [Crossref] [PubMed]
  23. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  24. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
    [Crossref] [PubMed]
  25. Y. Jang, J. Jang, and Y. K. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
    [Crossref] [PubMed]

2014 (4)

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39(8), 2262–2265 (2014).
[Crossref] [PubMed]

B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22(19), 23066–23072 (2014).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

2013 (2)

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[Crossref] [PubMed]

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

2012 (5)

2011 (4)

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
[Crossref] [PubMed]

S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

2010 (2)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[PubMed]

2009 (1)

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

2008 (3)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

2007 (1)

B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
[Crossref]

2002 (1)

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).

Badizadegan, K.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Barbul, A.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Benayahu, D.

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

Bhaduri, B.

Bursac, N.

Burton, D. R.

Choi, W.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Coppola, S.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Debnath, S. K.

Depeursinge, C.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Ding, H.

Do, M.

Edwards, C.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Feld, M. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Ferraro, P.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Gawad, S.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Gdeisat, M. A.

Ge, X. L.

Gefen, A.

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

Girshovitz, P.

Giugliano, M.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Goddard, L. L.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).

Grilli, S.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Guo, C. S.

Herráez, M. A.

Heuschkel, M.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Jang, J.

Jang, Y.

Jin, W.

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Katzengold, R.

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

Kemper, B.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
[Crossref]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Kim, K.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Korenstein, R.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Lalor, M. J.

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
[Crossref]

Liu, X.

Lv, C.

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Markram, H.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Merola, F.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Miccio, L.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Morgan, H.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Nevo, U.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

Park, Y. K.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. Jang, J. Jang, and Y. K. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[Crossref] [PubMed]

S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Patel, S.

Paturzo, M.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Pham, H.

Popescu, G.

B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37(11), 1868–1870 (2012).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).

H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
[Crossref] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Renaud, P.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Satterwhite, L. L.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[PubMed]

Schnakenberg, U.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Sha, B.

Shaked, N. T.

P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39(8), 2262–2265 (2014).
[Crossref] [PubMed]

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[Crossref] [PubMed]

P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express 3(8), 1757–1773 (2012).
[Crossref] [PubMed]

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[PubMed]

Shock, I.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

Shoham, N.

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

Sobh, N.

Suresh, S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Takeda, M.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

Vespini, V.

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Vollmer, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

von Bally, G.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
[Crossref]

Wang, Y.

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Wax, A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[PubMed]

Wessling, B.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

Wu, H.

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Xu, Y.

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

3D Res. (1)

S. Grilli, V. Vespini, F. Merola, P. Ferraro, L. Miccio, M. Paturzo, and S. Coppola, “Exploring the capabilities of digital holography as tool for testing optical microstructures,” 3D Res. 2, 1 (2011).

Appl. Opt. (1)

Biomed. Opt. Express (3)

Biophys. J. (1)

N. Shoham, P. Girshovitz, R. Katzengold, N. T. Shaked, D. Benayahu, and A. Gefen, “Adipocyte stiffness increases with accumulation of lipid droplets,” Biophys. J. 106(6), 1421–1431 (2014).
[Crossref] [PubMed]

Blood Cells Mol. Dis. (1)

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Cytometry A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73A(10), 895–903 (2008).
[Crossref] [PubMed]

Front. Neuroeng. (1)

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front. Neuroeng. 2, 1 (2009).

J. Biomed. Opt. (4)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Light: Sci. Appl. (1)

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 30, 1–6 (2012).

Opt. Commun. (1)

Y. Xu, Y. Wang, W. Jin, C. Lv, and H. Wu, “A new method of phase derivative extracting for off-axis quantitative phase imaging,” Opt. Commun. 305, 13–16 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optik and Photonik (1)

B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik and Photonik 2(2), 41–44 (2007).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Other (1)

N. Turko, I. Barnea, O. Blum, R. Korenstein, and N. T. Shaked, “Detection and controlled depletion of cancer cells using photothermal phase microscopy,” accepted to J. Biophoton. (2014).

Supplementary Material (2)

» Media 1: MP4 (5191 KB)     
» Media 2: MP4 (1211 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Algorithm A: The conventional algorithm for quantitative phase map reconstruction from off-axis holograms.
Fig. 2
Fig. 2 Algorithm D: The complex FFT algorithm.
Fig. 3
Fig. 3 Algorithm E: The re-sampling algorithm.
Fig. 4
Fig. 4 Algorithm F: The complex FFT re-sampling algorithm.
Fig. 5
Fig. 5 Comparison between the frame rates (in fps) of Algorithms A-F for various sizes of off-axis holograms. (a) When using phase unwrapping. (b) Without using phase unwrapping.
Fig. 6
Fig. 6 (a) Resolution comparison of the optical thickness maps between the conventional algorithm (Algorithm A) and the newly-presented fast algorithms (Algorithms D, E, and F), showing that in spite of significant speedup in the processing time, the quality of the reconstructions of the new algorithms was not damaged. White scale bars represent 10 μm upon the sample. (b) Graphs presenting the vertical cross sections between the white arrows shown in (a).
Fig. 7
Fig. 7 (a) Quantitative physical thickness maps of RBCs, obtained from an off-axis hologram containing 1024 × 1024 pixels. (b) RMS membrane displacement map of the RBCs, obtained by applying Algorithm F for the dynamically-changing thickness map, and using a FIFO stack of 24 points in time for each pixel. The calculation frame rate is 31 fps (see full dynamics in Media 1). All calculations were performed on a single-core processing unit of a conventional personal computer. White scale bars represent 10 µm.
Fig. 8
Fig. 8 Dynamic quantitative physical thickness maps of RBCs, obtained by applying Algorithm F for off-axis holograms containing 1024 × 2048 pixels. At the same time of the phase map calculation, we have calculated the dynamic RMS membrane fluctuation map in a window of 1024 × 256 pixels, shifted across the field of view, as obtained by a FIFO stack of 24 points in time per each pixel. The overall frame rate of these two calculations performed together is 15 fps (see full dynamics in Media 2). All calculations were performed on a single-core processing unit of a conventional personal computer. White scale bar represents 10 µm upon the sample.

Tables (1)

Tables Icon

Table 1 Comparison between the processing times and frame rates of the various algorithms for off-axis holograms containing 1024 × 1024 pixels.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | E s ( x , y ) | 2 + | E r | 2 + E s * ( x , y ) E r + E s ( x , y ) E r * = I s ( x , y ) + I r + 2 I s ( x , y ) I r cos ( 2 π λ [ O P D ( x , y ) y sin ( θ y ) x sin ( θ x ) ] ) ,
I C ( m , n ) = I A ( m , n ) + j I B ( m , n ) ,
I A ( m , n ) = I C ( m , n ) + I C * ( m , n ) 2 ; I B ( m , n ) = j I C * ( m , n ) I C ( m , n ) 2 .
F F T { I A } ( m , n ) = F F T { I C } ( m , n ) + F l i p { F F T { I C } * ( m , n ) } 2 ; F F T { I B } ( m , n ) = j F l i p { F F T { I C } * ( m , n ) } F F T { I C } ( m , n ) 2 .
Δ h R M S ( x , y ) = ( h ( x , y ; t ) h ( x , y ; t ) t ) 2 t ,

Metrics