Abstract

In x-ray coded aperture microscopy with polycapillary optics (XCAMPO), the microstructure of focusing polycapillary optics is used as a coded aperture and enables depth-resolved x-ray imaging at a resolution better than the focal spot dimensions. Improvements in the resolution and development of 3D encoding procedures require a simulation model that can predict the outcome of XCAMPO experiments. In this work we introduce a model of image formation in XCAMPO which enables calculation of XCAMPO datasets for arbitrary positions of the object relative to the focal plane as well as to incorporate optics imperfections. In the model, the exit surface of the optics is treated as a micro-structured x-ray source that illuminates a periodic object. This makes it possible to express the intensity of XCAMPO images as a convolution series and to perform simulations by means of fast Fourier transforms. For non-periodic objects, the model can be applied by enforcing artificial periodicity and setting the spatial period larger then the field-of-view. Simulations are verified by comparison with experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept

K. M. Dąbrowski, D. T. Dul, and P. Korecki
Opt. Express 21(3) 2920-2927 (2013)

Framework for computing the spatial coherence effects of polycapillary x-ray optics

Adam M. Zysk, Robert W. Schoonover, Qiaofeng Xu, and Mark A. Anastasio
Opt. Express 20(4) 3975-3982 (2012)

Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods

Fabio A. Vittoria, Paul C. Diemoz, Marco Endrizzi, Luigi Rigon, Frances C. Lopez, Diego Dreossi, Peter R. T. Munro, and Alessandro Olivo
Appl. Opt. 52(28) 6940-6947 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–286 (1990).
    [Crossref]
  2. C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray,” Opt. Instrum. 2010, 867049 (2010).
  3. L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
    [Crossref] [PubMed]
  4. B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
    [Crossref]
  5. K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
    [Crossref] [PubMed]
  6. K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
    [Crossref]
  7. J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
    [Crossref]
  8. A. Kuczumow and S. Larsson, “Scheme for x-ray tracing in capillary optics,” Appl. Opt. 33, 7928–7932 (1994).
    [Crossref] [PubMed]
  9. L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
    [Crossref]
  10. D. X. Balaic and K. A. Nugent, “X-ray optics of tapered capillaries,” Appl. Opt. 34, 7263–7272 (1995).
    [Crossref] [PubMed]
  11. L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
    [Crossref]
  12. D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
    [Crossref]
  13. X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
    [Crossref]
  14. A. Liu, “The X-ray distribution after a focusing polycapillary a shadow simulation,” Nucl. Instrum. Methods Phys. Res., Sect. B 243, 223–226 (2006).
    [Crossref]
  15. D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
    [Crossref]
  16. S. B. Dabagov and A. Marcelli, “Single-reflection regime of x rays that travel into a monocapillary,” Appl. Opt. 38, 7494–7497 (1999).
    [Crossref]
  17. S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
    [Crossref]
  18. S. B. Dabagov, “Wave theory of x-ray scattering in capillary structures,” X-ray Spectrom. 32, 223–228 (2003).
    [Crossref]
  19. S. B. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys. Usp. 46, 1053–1075 (2003).
    [Crossref]
  20. A. M. Zysk, R. W. Schoonover, Q. Xu, and M. A. Anastasio, “Framework for computing the spatial coherence effects of polycapillary x-ray optics,” Opt. Express 20, 3975–3982 (2012).
    [Crossref] [PubMed]
  21. T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
    [Crossref]
  22. T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 114, 53104 (2013).
    [Crossref]
  23. S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
    [Crossref]
  24. S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

2014 (1)

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

2013 (3)

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 114, 53104 (2013).
[Crossref]

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref] [PubMed]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

2012 (1)

2010 (1)

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray,” Opt. Instrum. 2010, 867049 (2010).

2009 (1)

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

2007 (1)

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

2006 (3)

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

A. Liu, “The X-ray distribution after a focusing polycapillary a shadow simulation,” Nucl. Instrum. Methods Phys. Res., Sect. B 243, 223–226 (2006).
[Crossref]

2005 (1)

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

2004 (2)

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

2003 (2)

S. B. Dabagov, “Wave theory of x-ray scattering in capillary structures,” X-ray Spectrom. 32, 223–228 (2003).
[Crossref]

S. B. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys. Usp. 46, 1053–1075 (2003).
[Crossref]

2000 (1)

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

1999 (1)

1998 (1)

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

1995 (2)

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

D. X. Balaic and K. A. Nugent, “X-ray optics of tapered capillaries,” Appl. Opt. 34, 7263–7272 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
[Crossref]

1990 (1)

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–286 (1990).
[Crossref]

Adams, F.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

Anastasio, M. A.

Balaic, D. X.

Bashir, S.

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

Brenker, F.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Cappuccio, G.

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

Chen, Y.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Cheng, J.

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Cibin, G.

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

Dabagov, S. B.

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

S. B. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys. Usp. 46, 1053–1075 (2003).
[Crossref]

S. B. Dabagov, “Wave theory of x-ray scattering in capillary structures,” X-ray Spectrom. 32, 223–228 (2003).
[Crossref]

S. B. Dabagov and A. Marcelli, “Single-reflection regime of x rays that travel into a monocapillary,” Appl. Opt. 38, 7494–7497 (1999).
[Crossref]

Dabrowski, K. M.

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref] [PubMed]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Ding, X.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Du, X.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Dul, D. T.

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref] [PubMed]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Engström, P.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Falkenberg, G.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Flora, F.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Gao, C.

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Hampai, D.

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

Han, S.

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Huang, W.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Janssens, K.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

Jia, Q.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Kanngiesser, B.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

Kersten, M.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Korecki, P.

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref] [PubMed]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Kovantsev, V.

J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
[Crossref]

Kozma, Zs.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Kuczumow, A.

Kukhlevsky, S. V.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Kumakhov, M.

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–286 (1990).
[Crossref]

Larsson, S.

Li, G.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Li, Y.

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

Lin, X.

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

Liu, A.

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

A. Liu, “The X-ray distribution after a focusing polycapillary a shadow simulation,” Nucl. Instrum. Methods Phys. Res., Sect. B 243, 223–226 (2006).
[Crossref]

Liu, Z.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Luo, Z.

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Ma, Y.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

MacDonald, C.

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray,” Opt. Instrum. 2010, 867049 (2010).

MacDonald, C. A.

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 114, 53104 (2013).
[Crossref]

J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
[Crossref]

Malzer, W.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

Marcelli, A.

Marinai, A.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Nugent, K. A.

Nyitray, G.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Palladino, L.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Petruccelli, J. C.

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

Reale, A.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Reiche, I.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

Rickers, K.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Rindby, A.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

Ritucci, A.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Rodriguez, A.

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

Schoonover, R. W.

Somogyi, A.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Sun, T.

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 114, 53104 (2013).
[Crossref]

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Tahir, S.

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

Tomassetti, G.

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

Ullrich, J. B.

J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
[Crossref]

Vekemans, B.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Vincze, L.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

Wrobel, A.

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Wu, P.

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

Xu, Q.

Yu, H.

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Yuan, Q.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Zhang, M.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Zhang, Z.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Zhu, P.

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Zysk, A. M.

Anal. Chem. (1)

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76, 6786–6791 (2004).
[Crossref] [PubMed]

Appl. Math. Comput. (1)

X. Lin, A. Liu, Y. Li, and P. Wu, “A MATLAB programming for simulation of X-ray capillaries,” Appl. Math. Comput. 172188–197 (2006).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

J. Appl. Phys. (2)

J. B. Ullrich, V. Kovantsev, and C. A. MacDonald, “Measurements of polycapillary x-ray optics,” J. Appl. Phys. 74, 5933–5939 (1993).
[Crossref]

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 114, 53104 (2013).
[Crossref]

J. Synchrotron Radiat. (1)

T. Sun, M. Zhang, Z. Liu, Z. Zhang, G. Li, Y. Ma, X. Du, Q. Jia, Y. Chen, Q. Yuan, W. Huang, P. Zhu, and X. Ding, “Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging,” J. Synchrotron Radiat. 16, 116–118 (2009).
[Crossref]

Nucl. Instrum. Methods B (1)

M. Kumakhov, “Channeling of photons and new x-ray optics,” Nucl. Instrum. Methods B 48, 283–286 (1990).
[Crossref]

Nucl. Instrum. Methods Phys. Res, Sect. B (1)

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through hollow channel: PolyCAD - a ray tracing code,” Nucl. Instrum. Methods Phys. Res, Sect. B 244, 481–488 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

A. Liu, “The X-ray distribution after a focusing polycapillary a shadow simulation,” Nucl. Instrum. Methods Phys. Res., Sect. B 243, 223–226 (2006).
[Crossref]

Opt. Express (2)

Opt. Instrum. (1)

C. MacDonald, “Focusing polycapillary optics and their applications,” X-ray,” Opt. Instrum. 2010, 867049 (2010).

Phys. Usp. (1)

S. B. Dabagov, “Channeling of neutral particles in micro-and nanocapillaries,” Phys. Usp. 46, 1053–1075 (2003).
[Crossref]

Proc. SPIE (1)

S. Bashir, S. Tahir, J. C. Petruccelli, and C. A. MacDonald, “Phase imaging using focused polycapillary optics,” Proc. SPIE 9207, 92070X (2014).

Rev. Sci. Instr. (1)

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

S. Han, H. Yu, J. Cheng, C. Gao, and Z. Luo, “Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source,” Rev. Sci. Instrum. 75, 3146–3151 (2004).
[Crossref]

Spectrochim. Acta, Part B (1)

D. Hampai, S. B. Dabagov, G. Cappuccio, and G. Cibin, “X-ray propagation through polycapillary optics studied through a ray tracing approach,” Spectrochim. Acta, Part B 62, 608–614 (2007).
[Crossref]

Spectrosc. Acta B-Atom. Spectr. (1)

B. Kanngiesser, W. Malzer, A. Rodriguez, and I. Reiche, “Three-dimensional micro-XRF investigations of paint layers with a tabletop setup,” Spectrosc. Acta B-Atom. Spectr. 60, 41–47 (2005).
[Crossref]

X-ray Spectrom. (3)

L. Vincze, K. Janssens, F. Adams, and A. Rindby, “Detailed ray-tracing code for capillary optics,” X-ray Spectrom. 24, 27–37 (1995).
[Crossref]

S. V. Kukhlevsky, F. Flora, A. Marinai, G. Nyitray, Zs. Kozma, A. Ritucci, L. Palladino, A. Reale, and G. Tomassetti, “Wave-optics treatment of x-rays passing through tapered capillary guides,” X-ray Spectrom. 29, 354–359 (2000).
[Crossref]

S. B. Dabagov, “Wave theory of x-ray scattering in capillary structures,” X-ray Spectrom. 32, 223–228 (2003).
[Crossref]

Supplementary Material (1)

» Media 1: AVI (4654 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Model used for simulation of image formation in XCAMPO and the definition of the most important quantities. (a) Geometry of image formation. For clarity only beams from outermost capillaries are shown. Polycapillary focusing optics is treated as a micro-structured source S which illuminates a periodic object with transmission T. For a non-periodic object, artificial periodicity is enforced and the spatial period a is set larger then the field-of-view (FOV). (b) Model of the exit surface of polycapillary optics used in calculations (shown for nC = 3 and nB = 2).
Fig. 2
Fig. 2 Mechanism of image formation in XCAMPO. The calculation was performed for a largely simplified microstructure of the optics, for which images of the object generated by x-ray beams from individual capillaries hardly overlap. (a) Object’s transmission T. Spatial period a was set larger then the field-of-view. (b) Spatial distribution S of capillaries in the optics. (c) XCAMPO data calculated for an in-focal plane position of the object (d = f). (d) XCAMPO data calculated for an out-of-focal plane position (d = f +1mm). Images on the right show enlarged parts of the data.
Fig. 3
Fig. 3 Comparison of calculation with experimental XCAMPO data. The calculation was performed for the transmission function T shown in (a) and for S function that corresponds to experimental pinhole image shown in (b). Calculated XCAMPO data are shown for the in-focal plane position (c) and for the out-of-focal plane position (d). Corresponding experimental data recorded for a 25 μm diameter tungsten wire are shown in (e) and (f).
Fig. 4
Fig. 4 Calculation of XCAMPO data at a higher magnification. Model of the optics is shown in (a). Calculations for 1 μm pinhole are shown for the in-focal plane position (b) and for the out-of-focal plane position (c). Images at the bottom show enlarged parts of the data, that are marked with rectangles in the upper panels. Dashed hexagons are shown for a better visualization of the changes in dimensions of features in (a,b) and (c).
Fig. 5
Fig. 5 Simulation of a 3D XCAMPO dataset. The calculation was performed for two crossed gratings with pitches of 12.5 μm spaced by 100 μm as shown in (a). Single-frame excerpts ( I ˜ / I ˜ 0 ) from a movie ( Media 1) corresponding to a raster scan of gratings shown for two different positions (b) and (c) in the xy plane. Text labels describe the position of gratings in the z direction.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

B ( r s , R R s ) = S ( r s ) G ( R R s ) ,
α Δ x 2 + Δ y 2 + ( Δ y x s Δ x y s ) 2 / f 2 D ( 1 + ( x s 2 + y s 2 ) / f ) ,
M = f D f ,
α | r M r s | D .
I 0 ( r ) = 1 D 2 G ( r M r s ) S ( r s ) d r s ,
G ( r ) = 1 2 π θ c 2 exp ( 1 2 | r | 2 D 2 θ c 2 ) .
I 0 ( r ) = 1 D 2 G ( r ) * S M ( r ) ,
S M ( r ) = 1 M 2 S ( r M ) .
I ( r ) = 1 D 2 T ( r r s D d + r s ) G ( r M r s ) S ( r s ) d r s .
I ( r ) = 1 D 2 T M G ( r ) * S M ( r ) ,
T M G ( r ) = T ( r 1 M ) G ( r ) .
T ( r ) = h T h e 2 π ih · r
T h = 1 a 2 T ( r ) e 2 π ih · r d r .
F { I ( r ) } = 1 M 2 D 2 h T h F { e 2 π i d D h · r G ( r ) } F { S ( r M ) e 2 π i d f D f h · r }
I ( r ) = 1 D 2 h T h [ C h ( r ) * S M h ( r ) ] ,
G h ( r ) = G ( r ) e 2 π i d D h · r
S M h ( r ) = 1 M 2 S ( r M ) e 2 π i d f D f h · r .
T h T h e 2 π ih · r 0 .
B ( r ) * [ G h ( r ) * S M h ( r ) ] = [ B ( r ) * G h ( r ) ] * S M h ( r ) .
B ( r ) = 1 2 π β 2 e 1 2 | r | 2 β 2 .
δ x y 2 = β 2 + γ x y 2 .
f ˜ = f + ε ,
Φ ( ε ) = 1 γ z 2 π exp [ 1 2 ε 2 γ z 2 ] .
S ˜ M ( r ) = 1 M ˜ 2 S ( r M ˜ ) Φ ( ε ) d ε
S ˜ M h = 1 M ˜ 2 S ( r M ˜ ) exp [ 2 π i d f ˜ D f ˜ h · r ] Φ ( ε ) d ε ,
M ˜ = f ˜ D f ˜ .
I ˜ ( r ) = 1 D 2 h T ˜ h G ˜ h ( r ) * S ˜ M h ( r ) ,
I ˜ 0 ( r ) = 1 D 2 G ˜ ( r ) * S ˜ M ( r ) ,
T ˜ h = T h exp [ ( 2 π d θ c δ x y ) 2 2 σ 2 | h | 2 ] ,
G ˜ h ( r ) = G ˜ ( r ) exp [ 2 π i d D θ c 2 σ 2 h · r ] ,
G ˜ ( r ) = D 2 2 π σ 2 exp [ | r | 2 2 σ 2 ] ,
σ 2 = D 2 θ c 2 + δ x y 2 .
T 3 D = i = 1 N T i ( r r s D d i + r s ) 1 N + i = 1 N T i ( r r s D d i + r s )
I ˜ 3 D ( 1 N ) I ˜ 0 + i N I ˜ i ,

Metrics