Abstract

Cascaded Stimulated Polariton Scattering (SPS) to the fourth-Stokes order is observed experimentally in an intracavity THz polariton laser utilising Mg:LiNbO3. The performance of the cascaded laser is presented, the origin of the cascaded fields is explained and compared to theory, and the potential consequences for using cascading to enhance the THz output from this type of device are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating

Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee
Opt. Express 25(4) 3991-3999 (2017)

Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output

Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee
Opt. Express 24(10) 10254-10264 (2016)

Multiwavelength ultrafast LiNbO3 Raman laser

Aravindan M. Warrier, Jipeng Lin, Helen M. Pask, Andrew J. Lee, and David J. Spence
Opt. Express 23(20) 25582-25587 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  2. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).
  3. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
    [Crossref] [PubMed]
  4. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H. W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
    [Crossref] [PubMed]
  5. T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [Crossref] [PubMed]
  6. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).
  7. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [Crossref] [PubMed]
  8. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32(19), 2885–2887 (2007).
    [Crossref] [PubMed]
  9. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009).
    [Crossref] [PubMed]
  10. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
  11. S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford CA, Microwave Laboratory Report, 1851 (1970).
  12. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [Crossref]
  13. J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
  14. K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).
  15. H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).
  16. C. L. Thomson and M. H. Dunn, “Observation of a cascaded process in intracavity terahertz optical parametric oscillators based on lithium niobate,” Opt. Express 21(15), 17647–17658 (2013).
    [Crossref] [PubMed]
  17. A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
  18. A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
    [Crossref] [PubMed]
  19. L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
    [Crossref]
  20. Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).
  21. J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
    [Crossref]
  22. J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).
  23. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  24. J. Kiessling, K. Buse, and I. Breunig, “Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range,” J. Opt. Soc. Am. B 30(4), 950–952 (2013).
    [Crossref]
  25. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9(11), 2548–2553 (1970).
    [Crossref] [PubMed]
  26. J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
    [Crossref]
  27. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999).
    [Crossref] [PubMed]

2014 (1)

2013 (6)

J. Kiessling, K. Buse, and I. Breunig, “Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range,” J. Opt. Soc. Am. B 30(4), 950–952 (2013).
[Crossref]

C. L. Thomson and M. H. Dunn, “Observation of a cascaded process in intracavity terahertz optical parametric oscillators based on lithium niobate,” Opt. Express 21(15), 17647–17658 (2013).
[Crossref] [PubMed]

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).

2010 (1)

2009 (2)

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009).
[Crossref] [PubMed]

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

2008 (1)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

2007 (2)

2006 (2)

T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[Crossref] [PubMed]

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

2002 (2)

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

2001 (1)

K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

2000 (1)

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

1999 (2)

1998 (1)

J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
[Crossref]

1997 (1)

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

1970 (1)

1969 (1)

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Bing, P.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

Blows, J. L.

J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
[Crossref]

Breunig, I.

Browne, P.

Browne, P. G.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Buse, K.

Chang, G.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Chicklis, E. P.

Creeden, D.

Dawes, J. M.

J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
[Crossref]

Dierolf, V.

Ding, Y. J.

Divin, C. J.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Dunn, M.

Dunn, M. H.

C. L. Thomson and M. H. Dunn, “Observation of a cascaded process in intracavity terahertz optical parametric oscillators based on lithium niobate,” Opt. Express 21(15), 17647–17658 (2013).
[Crossref] [PubMed]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Edwards, T.

Edwards, T. J.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Fernelius, N.

Galvanauskas, A.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Giehler, M.

Grahn, H. T.

Greiner-Bär, M.

Hayashi, S.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

He, Y.

A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).

Hey, R.

Hübers, H. W.

Ito, H.

K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32(19), 2885–2887 (2007).
[Crossref] [PubMed]

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Jackel, S.

Jiang, Z.

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

Johnson, B. C.

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Jundt, D.

Karino, K.-I.

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

Katz, M.

Kawase, K.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Ketteridge, P. A.

Kiessling, J.

Koechner, W.

Komiak, J. J.

Lavi, R.

Lebiush, E.

Lee, A. J.

A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
[Crossref] [PubMed]

A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).

Li, X.

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

Li, Z.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Liu, C.-H.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Liu, L.

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

McCarthy, J. C.

Minamide, H.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

Miyamoto, K.

Mizuno, M.

Nawata, K.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

Norris, T. B.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Omatsu, T.

J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
[Crossref]

Paiss, I.

Pantell, R. H.

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Pask, H. M.

A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
[Crossref] [PubMed]

A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).

Pavlov, S. G.

Puthoff, H. E.

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Rae, C.

Rae, C. F.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Richter, H.

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Schrottke, L.

Schunemann, P. G.

Semenov, A. D.

Shi, W.

Shikata, J.-

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

Shikata, J.-i.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

Small, D. L.

Sohma, S.

Southward, T.

Sowade, R.

Spurr, M.

Stothard, D. J. M.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Suizu, K.

Sussman, S. S.

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Taira, T.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

Takahashi, H.

Taniuchi, T.

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Tashiro, H.

Thomson, C. L.

C. L. Thomson and M. H. Dunn, “Observation of a cascaded process in intracavity terahertz optical parametric oscillators based on lithium niobate,” Opt. Express 21(15), 17647–17658 (2013).
[Crossref] [PubMed]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

Tzuk, Y.

Urata, Y.

Vodopyanov, K.

Wada, S.

Walsh, D.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[Crossref] [PubMed]

Wang, H.

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

Wang, P.

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Wang, Y.

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Wienold, M.

Williamson, S. L.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on a ultrafast Yb-doped fiber amplifier,” Opt. Express 17, 7909–7913 (2006).

Winik, M.

Xu, D.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Xu, X.

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

Yamashita, T.

Yao, J.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Yarborough, M.

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

Zelmon, D. E.

Zhong, K.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

Zhu, A.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

Zuo, N.

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

Appl. Opt. (2)

Appl. Phys. Lett. (3)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92, 141105 (2008).

M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

A. J. Lee, Y. He, and H. M. Pask, “Frequency-tunable THz source based on Stimulated Polariton Scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).

IEEE Trans. Microw. Theory Tech. (1)

J.-I. Shikata, K. Kawase, K.-I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).

IEEE Trans. Terahertz Sci. Technol. (1)

J. Yao, Y. Wang, D. Xu, K. Zhong, Z. Li, and P. Wang, “High-energy, continuously tunable intracavity terahertz-wave parametric oscillator,” IEEE Trans. Terahertz Sci. Technol. 2, 49–56 (2009).

J. Appl. Phys. (1)

J. L. Blows, J. M. Dawes, and T. Omatsu, “Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry,” J. Appl. Phys. 83(6), 2901–2906 (1998).
[Crossref]

J. Infrared Millimeter and Terahertz Waves (2)

L. Liu, X. Li, X. Xu, H. Wang, and Z. Jiang, “Theoretical analysis of a cascaded continuous-wave optical parametric oscillator,” J. Infrared Millimeter and Terahertz Waves 34(3-4), 238–250 (2013).
[Crossref]

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J.-i. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Millimeter and Terahertz Waves 35, 25–37 (2013).

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

K. Kawase, J.-i. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Jpn. J. Appl. Phys. (1)

J.- Shikata, K. Kawase, T. Taniuchi, and H. Ito, “Fourier-transform spectrometer with a terahertz-wave parametric generator,” Jpn. J. Appl. Phys. 41(1), 134–138 (2002).
[Crossref]

Opt. Eng. (1)

Z. Li, A. Zhu, N. Zuo, P. Bing, D. Xu, K. Zhong, and J. Yao, “Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves,” Opt. Eng. 52(10), 106103 (2013).

Opt. Express (6)

Opt. Lett. (4)

Other (1)

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford CA, Microwave Laboratory Report, 1851 (1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental layout.
Fig. 2
Fig. 2 Spectral output from the (a) fundamental resonator and (b) Stokes resonator, for an incident pump power of 8.5 W and an internal angle (Θ) of 0.70 degrees between the fundamental and first-Stokes fields within the Mg:LiNbO3 crystal. A close-up of the fourth-Stokes line is shown inset in (a).
Fig. 3
Fig. 3 Wave vector diagrams of the fundamental, cascaded Stokes and THz fields in relation to the resonator mirrors M1-M4, for a given value of θ. Wave vectors of the fundamental and polariton fields are denoted κf and κpol respectively; and those of the first, second, third and fourth Stokes lines are denoted by κS1, κS2, κS3 and κS4 respectively.
Fig. 4
Fig. 4 Plots of the experimental and theoretically predicted values of (a) cascaded Stokes wavelengths (note that the error bars are too small to plot), and; (b) THz frequencies generated with each Stokes cascade. Experimental data is shown as data points, while theoretical data is represented as solid lines.
Fig. 5
Fig. 5 Temporal characteristics of the output generated from the fundamental and Stokes cavities at an incident pump power of 7.5 W, for the system (a) without Stokes cascade, and (b) with Stokes cascade. Note that the signal strength is normalized for the fundamental and Stokes fields.
Fig. 6
Fig. 6 Power scaling curves for the NIR and THz fields in the case of (a) without cascade, and (b) with cascaded SPS.
Fig. 7
Fig. 7 Plot of THz output power as a function of tuning angle and THz frequency.

Metrics