Abstract

We compared the sensitivity to X-rays of several fiber Bragg gratings (FBGs) written in the standard telecommunication fiber Corning SMF28 with different techniques. Standard gratings were manufactured with phase-mask and UV lasers, continuum wave (cw) at 244 nm or pulsed in the nanosecond domain at 248 nm, in a pre-hydrogenated fiber. Others gratings were written by exposures to a femtosecond IR-laser (800 nm), with both phase-mask and point by point techniques. The response of these FBGs was studied under X-rays at room temperature and 100°C, by highlighting their similarities and differences. Independently of the inscription technique, the two types of fs-FBGs have showed no big difference up to 1 MGy(SiO2) dose. A discussion on the causes of the radiation-induced peak change is also reported.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane
Opt. Lett. 39(18) 5313-5316 (2014)

Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation

K.A. Zagorulko, P.G. Kryukov, Yu.V. Larionov, A.A. Rybaltovsky, E.M. Dianov, S.V. Chekalin, Yu.A. Matveets, and V.O. Kompanets
Opt. Express 12(24) 5996-6001 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  2. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology: Fundamentals and Overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  4. F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science, 2011), pp. 218–237.
  5. A. I. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
  6. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
    [Crossref]
  7. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  8. A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).
  9. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in All-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
  10. G. D. Marshall and M. J. Withford, “Annealing properties of femtosecond laser inscribed point-by-point fiber Bragg gratings,” in Nonlinear Photonics Conference, 2007 OSA Technical Digest Series (Optical Society of America, 2007), paper JWA30.
  11. R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
    [PubMed]
  12. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
    [Crossref]
  13. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
    [Crossref]
  14. M. Ams, A. Pal, R. J. Williams, R. Sen, M. J. Withford, T. Sun, and K. T. V. Grattan, “Fibre Bragg grating sensors for radiation insensitive measurements,” in 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology, Barton, ACT (Engineers Australia, 2014), pp. 1067–1069.
  15. Corning, http://www.corning.com/opticalfiber/products/index.aspx , accessed 1/1/15.
  16. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  17. S. Costes, “Extension de l’approche par courbe maitresse de la prédiction des durées de vie de réseaux d’indice complexes inscrits par UV dans les fibres optiques,” Ph.D. dissertation, Univ. de Paris XI, Paris, France, 2013.
  18. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
    [Crossref] [PubMed]
  19. P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).
  20. A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
    [Crossref]
  21. H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
    [Crossref]
  22. S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).
  23. A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
    [Crossref]
  24. M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire,” Ph.D. dissertation, Univ. de Paris XI, Paris, France, 2001.

2014 (1)

2013 (4)

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[PubMed]

2010 (3)

A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

2006 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

2005 (2)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (1)

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: Fundamentals and Overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

Agnello, S.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Blackmore, E. W.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Boukenter, A.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Brichard, B.

A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
[Crossref]

Cannas, M.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Di Francesca, D.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Ding, H.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

Ferlet-Cavrois, V.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Flament, O.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Gaillardin, M.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Girard, S.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Grobnic, D.

Gusarov, A.

A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
[Crossref]

Gusarov, A. I.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).

Henschel, H.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: Fundamentals and Overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Hoeffgen, S. K.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

Jones, R. L.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Jovanovic, N.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Krämer, R. G.

Kuhnhenn, J.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Lancry, M.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Léon, M.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Lu, P.

Macé, J.-R.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Marcandella, C.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Marin, E.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: Fundamentals and Overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mihailov, S.

Mihailov, S. J.

Morana, A.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Nikogosyan, D. N.

A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
[Crossref]

Nolte, S.

Ouerdane, Y.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Paillet, P.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Périsse, J.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Poumellec, B.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Raine, M.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Richard, N.

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

Rizzolo, S.

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Schwank, J. R.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Shaneyfelt, M. R.

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

Smelser, C.

Smelser, C. W.

Steel, M. J.

Taouri, A.

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

Unruh, J.

Walker, R. B.

Weinand, U.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Williams, R. J.

Withford, M. J.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Electron. Lett. (2)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29(18), 1668–1669 (1993).

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photon. Technol. Lett. 18(21), 2266–2268 (2006).
[Crossref]

IEEE Trans. Nucl. Sci. (5)

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

S. Girard, C. Marcandella, A. Morana, J. Périsse, D. Di Francesca, P. Paillet, J.-R. Macé, A. Boukenter, M. Léon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 60(6), 4305–4313 (2013).

A. Gusarov, B. Brichard, and D. N. Nikogosyan, “Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers,” IEEE Trans. Nucl. Sci. 57(4), 2024–2028 (2010).
[Crossref]

P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament, and E. W. Blackmore, “Comparison of charge yield in MOS devices for different radiation sources,” IEEE Trans. Nucl. Sci. 49(6), 2656–2661 (2002).

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Other (7)

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J.-R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. (to be published).

F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science, 2011), pp. 218–237.

S. Costes, “Extension de l’approche par courbe maitresse de la prédiction des durées de vie de réseaux d’indice complexes inscrits par UV dans les fibres optiques,” Ph.D. dissertation, Univ. de Paris XI, Paris, France, 2013.

M. Ams, A. Pal, R. J. Williams, R. Sen, M. J. Withford, T. Sun, and K. T. V. Grattan, “Fibre Bragg grating sensors for radiation insensitive measurements,” in 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology, Barton, ACT (Engineers Australia, 2014), pp. 1067–1069.

Corning, http://www.corning.com/opticalfiber/products/index.aspx , accessed 1/1/15.

G. D. Marshall and M. J. Withford, “Annealing properties of femtosecond laser inscribed point-by-point fiber Bragg gratings,” in Nonlinear Photonics Conference, 2007 OSA Technical Digest Series (Optical Society of America, 2007), paper JWA30.

M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire,” Ph.D. dissertation, Univ. de Paris XI, Paris, France, 2001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Radiation-induced Bragg wavelength shift (RI-BWS) at RT associated with a period of X-ray exposure up to 1 MGy dose followed by a recovery period, for gratings written with different techniques and lasers. The vertical dashed lines indicate the start and the end of the irradiation.
Fig. 2
Fig. 2 Enhancement of Fig. 1, to underline the small BWS induced in the fs-FBGs.
Fig. 3
Fig. 3 Variation of the peak amplitude as a function of the time from the irradiation start at 27°C up to 1 MGy dose. The vertical dashed lines indicate the start and the end of the irradiation.
Fig. 4
Fig. 4 Radiation-induced Bragg wavelength shift at 100°C associated with a period of X-ray exposure up to 1 MGy dose followed by a recovery period, for gratings written with different techniques and lasers. The vertical dashed lines indicate the start and the end of the irradiation.
Fig. 5
Fig. 5 Variation of the peak amplitude as a function of the time from the irradiation start, for irradiation around 100°C up to 1 MGy dose. The vertical dashed lines indicate the start and the end of the irradiation.
Fig. 6
Fig. 6 Comparison between the radiation effects on the fs-PM-FBGs subjected to the standard thermal treatment or the longer annealing (50 hours at 120°C) and the fs-PbP-grating. The irradiation was performed at 100°C up to 1 MGy dose. As for the other graphs, the vertical dashed lines indicate the start and the end of the irradiation.
Fig. 7
Fig. 7 Bragg wavelength shift induced by the radiation at RT, as a function of the time from the first irradiation start, for a non-pre-treated fs-PbP-FBG. The vertical dashed lines indicate the start and the end of the irradiation runs. In the upper part of the graph the total dose reached after a run is shown, the dose-rate being 50 Gy/s. In the inset, comparison of the radiation-effects at RT on two different fs-PbP-gratings: one was not thermally treated and irradiated up to 1.5 MGy dose (black curve) and the other was subjected to the standard annealing and irradiated up to 1 MGy dose (red curve, results already shown in Fig. 1 and 2).
Fig. 8
Fig. 8 Bragg wavelength shift induced by the radiation at 100°C, as a function of the time from the first irradiation start, for a non-treated fs-PbP-grating. The vertical dashed lines indicate the start and the end of the irradiation runs. In the upper part of the graph the total dose reached after a run is shown, the dose-rate being 50 Gy/s. In the inset, comparison of the radiation-effects at 100°C on two different fs-PbP-gratings: one was not thermally treated and irradiated up to 1.5 MGy dose (black curve) and the other was subjected to the standard annealing and irradiated up to 1 MGy dose (red curve, results already shown in Fig. 4 and 6).

Tables (1)

Tables Icon

Table 1 Inscription parameters for the different gratings. ��nmod is the value of the modulation amplitude of the refractive index, calculated from the peak amplitude recorded before irradiation. It cannot be calculated for the PbP grating, as it has a very non-uniform refractive index profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ m ,

Metrics