Abstract

We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and generates strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy and linear proportionality between the two observables is established.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-cycle laser pulses generation with frequency tuning in a molecular gas-filled hollow-core fiber

Zhiyuan Huang, Ding Wang, Yuxin Leng, and Ye Dai
Opt. Express 23(14) 17711-17719 (2015)

Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra

Jeffrey R. Chen, Kenji Numata, and Stewart T. Wu
Opt. Express 23(3) 2660-2675 (2015)

Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases

Matthew Reichert, Peng Zhao, Jennifer M. Reed, Trenton R. Ensley, David J. Hagan, and Eric W. Van Stryland
Opt. Express 23(17) 22224-22237 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  2. L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
    [Crossref]
  3. J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
    [Crossref]
  4. D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
    [Crossref] [PubMed]
  5. B. Clough, J. Liu, and X. C. Zhang, “Laser-induced photoacoustics influenced by single-cycle terahertz radiation,” Opt. Lett. 35, 3544–3546 (2010).
    [Crossref] [PubMed]
  6. A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
    [Crossref]
  7. J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290–1293 (2014).
    [Crossref] [PubMed]
  8. S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
    [Crossref]
  9. Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
    [Crossref] [PubMed]
  10. N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).
  11. S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum control of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601 (2014).
    [Crossref] [PubMed]
  12. D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
    [Crossref]
  13. A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
    [Crossref]
  14. A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
    [Crossref] [PubMed]
  15. W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
    [Crossref]
  16. J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
    [Crossref]
  17. D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
    [Crossref] [PubMed]
  18. A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
    [Crossref] [PubMed]
  19. V. Milner and J. W. Hepburn, “Control of molecular rotation in the limit of extreme rotational excitation,” submitted arXiv:1501.02739 (2015).
  20. A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
    [Crossref]
  21. K. P. Huber and G. Herzberg, NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 of Constants of Diatomic Molecules (National Institute of Standards and Technology, Gaithersburg MD, retrieved January, 2015).
  22. J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
    [Crossref]

2014 (6)

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290–1293 (2014).
[Crossref] [PubMed]

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum control of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601 (2014).
[Crossref] [PubMed]

A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
[Crossref] [PubMed]

A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
[Crossref]

2013 (1)

2011 (2)

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

2010 (1)

2009 (1)

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

2007 (2)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

2006 (1)

2003 (1)

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

2000 (1)

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

1999 (1)

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

1998 (1)

A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
[Crossref]

1983 (1)

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[Crossref]

1980 (1)

D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
[Crossref]

Aseyev, S. A.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Averbukh, I. S.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Bar, I.

A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
[Crossref]

Barrett, J. J.

D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
[Crossref]

Berg, L.

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Birnbaum, R.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Bochkarev, N. N.

Boutou, V.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Burgmeier, J.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Cheng, Y. H.

Clough, B.

Compton, R.

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

Corkum, P.

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

Corkum, P. B.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Dietrich, P.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Favre, C.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Filin, A.

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

Geffroy, S.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Gershnabel, E.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Hepburn, J. W.

V. Milner and J. W. Hepburn, “Control of molecular rotation in the limit of extreme rotational excitation,” submitted arXiv:1501.02739 (2015).

Heritier, J.-M.

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[Crossref]

Herzberg, G.

K. P. Huber and G. Herzberg, NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 of Constants of Diatomic Molecules (National Institute of Standards and Technology, Gaithersburg MD, retrieved January, 2015).

Huber, K. P.

K. P. Huber and G. Herzberg, NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 of Constants of Diatomic Molecules (National Institute of Standards and Technology, Gaithersburg MD, retrieved January, 2015).

Ivanov, M.

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

Ivanov, M. Y.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Jhajj, N.

Karczmarek, J.

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

Kartashov, D. V.

Kasparian, J.

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Katz, O.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Kirsanov, A. V.

Kiselev, A. M.

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
[Crossref] [PubMed]

Korobenko, A.

A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
[Crossref]

A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
[Crossref] [PubMed]

Levis, R. J.

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

Liu, J.

Liu, J. S.

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

Melchior, A.

A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
[Crossref]

Milchberg, H. M.

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum control of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290–1293 (2014).
[Crossref] [PubMed]

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

Milner, A. A.

A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
[Crossref] [PubMed]

A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
[Crossref]

Milner, V.

A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
[Crossref]

A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
[Crossref] [PubMed]

V. Milner and J. W. Hepburn, “Control of molecular rotation in the limit of extreme rotational excitation,” submitted arXiv:1501.02739 (2015).

Mondelain, D.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Nuter, R.

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Ponomarev, Y. N.

Romanov, D. A.

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

Rosenthal, E. W.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290–1293 (2014).
[Crossref] [PubMed]

Rosenwaks, S.

A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
[Crossref]

Salmon, E.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Schade, W.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Schippers, W.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Siebert, D. R.

D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
[Crossref]

Silberberg, Y.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Skupin, S.

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Spanner, M.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Stepanov, A. N.

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
[Crossref] [PubMed]

Tikhomirov, A. B.

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

Tikhomirov, B. A.

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
[Crossref] [PubMed]

Villeneuve, D. M.

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

Wahlstrand, J. K.

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290–1293 (2014).
[Crossref] [PubMed]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum control of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

Wang, S. L.

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

West, G. A.

D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
[Crossref]

Willer, U.

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Wolf, J. P.

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Wolf, J.-P.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Wright, J.

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

Wu, S. Q.

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

Yu, J.

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

Yu, N. P.

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

Zahedpour, S.

Zeng, Y.

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

Zhang, X. C.

Appl. Optics (2)

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Optics 42, 7117–7120 (2003).
[Crossref]

D. R. Siebert, G. A. West, and J. J. Barrett, “Gaseous trace analysis using pulsed photoacoustic raman spectroscopy,” Appl. Optics 19, 53–60 (1980).
[Crossref]

Appl. Phys. B (1)

W. Schippers, E. Gershnabel, J. Burgmeier, O. Katz, U. Willer, I. S. Averbukh, Y. Silberberg, and W. Schade, “Stimulated raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation,” Appl. Phys. B 105, 203–211 (2011).
[Crossref]

Indian J. Phys. (1)

S. Q. Wu, J. S. Liu, S. L. Wang, and Y. Zeng, “Experimental investigation on photoacoustic emission from femtosecond-laser-induced air plasma,” Indian J. Phys. 88, 329–332 (2014).
[Crossref]

J. Phys. Chem. A (1)

A. Melchior, I. Bar, and S. Rosenwaks, “Chf2cl and ch3cf2cl detection by coherent anti-stokes raman scattering and photoacoustic raman spectroscopy,” J. Phys. Chem. A 102, 7273–7276 (1998).
[Crossref]

New J. Phys. (1)

A. A. Milner, A. Korobenko, and V. Milner, “Coherent spinrotational dynamics of oxygen superrotors,” New J. Phys. 16, 093038 (2014).
[Crossref]

Opt. Commun. (1)

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. Lett. (5)

A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102, 155004 (2009).
[Crossref] [PubMed]

J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, “Optical centrifuge for molecules,” Phys. Rev. Lett. 82, 3420 (1999).
[Crossref]

D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542 (2000).
[Crossref] [PubMed]

A. Korobenko, A. A. Milner, and V. Milner, “Direct observation, study, and control of molecular superrotors,” Phys. Rev. Lett. 112, 113004 (2014).
[Crossref] [PubMed]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum control of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Quantum Electron. (1)

A. M. Kiselev, N. P. Yu, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41, 976 (2011).
[Crossref]

Rep. Prog. Phys. (1)

L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Other (2)

V. Milner and J. W. Hepburn, “Control of molecular rotation in the limit of extreme rotational excitation,” submitted arXiv:1501.02739 (2015).

K. P. Huber and G. Herzberg, NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 of Constants of Diatomic Molecules (National Institute of Standards and Technology, Gaithersburg MD, retrieved January, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a): Experimental set up. BS: beam splitter, DM: dichroic mirror, CP/CA: circular polarizer/analyzer, DL: delay line, L: lens, MIC: Microphone. (b): Centrifuge shaper. GR: grating, M: pick-off mirror in the Fourier plane of lens L of focal length f, CB1 and CB2: two “chirp boxes”, schematically shown in panel (c), where RR denotes a retro-reflector and length l controls the applied frequency chirp.
Fig. 2
Fig. 2 Typical rotational Raman spectrum of oxygen superrotors measured with a probe pulse delayed by 200 ps with respect to the centrifuge pulse (see text for the description of various components). Inset: an example of the acoustic signal recorded in centrifuged ambient air.
Fig. 3
Fig. 3 Amplitude of the recorded sound as a function of the energy of centrifuge pulses, plotted on a log-log scale. Each data set consists of 10,000 points. (a) Typical acoustic signal from the centrifuged gas of nitrogen molecules (blue diamonds) is compared to the sound generated by the centrifuge in pure argon at the same pressure of 95 kPa (green triangles). (b) Acoustic response of the centrifuged oxygen with and without a small admixture of SF6 molecules (black dots and red circles, respectively). Black dashed lines in both panels show fits to power-law scaling.
Fig. 4
Fig. 4 Amplitude of the recorded sound as a function of the rotational energy deposited in the gas sample. (a) Acoustic response from the centrifuged gas of nitrogen molecules (blue circles) is compared to the sound generated by the centrifuge in pure argon at the same pressure of 95 kPa (green triangles). (b) Acoustic response from the centrifuged oxygen with and without a small admixture of SF6 molecules (black dots and red circles, respectively). All insets show Raman spectra corresponding to the data points marked with black crosses and plotted as a function of rotational frequency in THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E rot = N P N E N .
E rot N > N th R N E N .

Metrics