Abstract

We report on the design, fabrication and performance of a hetero-integrated III-V on silicon distributed feedback lasers (DFB) at 1310 nm based on direct bonding and adiabatic coupling. The continuous wave (CW) regime is achieved up to 55 °C as well as mode-hop-free operation with side-mode suppression ratio (SMSR) above 55 dB. At room temperature, the current threshold is 36 mA and the maximum coupled power in the silicon waveguide is 22 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser

Jing Zhang, Bahawal Haq, James O’Callaghan, Angieska Gocalinska, Emanuele Pelucchi, António José Trindade, Brian Corbett, Geert Morthier, and Gunther Roelkens
Opt. Express 26(7) 8821-8830 (2018)

4–λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects

Yajie Li, Hongyan Yu, Wengyu Yang, Chaoyang Ge, Pengfei Wang, Fangyuan Meng, Guangzhen Luo, Mengqi Wang, Xuliang Zhou, Dan Lu, Guangzhao Ran, and Jiaoqing Pan
Photon. Res. 7(6) 687-692 (2019)

1310nm silicon evanescent laser

Hsu-Hao Chang, Alexander W. Fang, Matthew N. Sysak, Hyundai Park, Richard Jones, Oded Cohen, Omri Raday, Mario J. Paniccia, and John E. Bowers
Opt. Express 15(18) 11466-11471 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics - Energy efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  2. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref] [PubMed]
  4. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref] [PubMed]
  5. S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
    [Crossref]
  6. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
    [Crossref] [PubMed]
  7. M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
    [Crossref] [PubMed]
  8. B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19(11), 10317–10325 (2011).
    [Crossref] [PubMed]
  9. B. Ben Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceau, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on Silicon Lasers,” in ECS. 64, 211-223 (2014).
  10. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
    [Crossref] [PubMed]
  11. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
    [Crossref]
  12. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
    [Crossref] [PubMed]
  13. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
    [Crossref] [PubMed]
  14. J. Van Campenhout, M. Pantouvaki, P. Verheyen, S. Selvaraja, G. Lepage, H. Yu, W. Lee, J. Wouters, D. Goossens, M. Moelants, W. Bogaerts, and P. Absil, “Low-voltage, low-loss, multi-Gb/s silicon micro-ring modulator based on a MOS capacitor,” in Optical Fiber Communication Conference, OSA Technical Digest, paper OM2E.4.
    [Crossref]
  15. L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
    [Crossref] [PubMed]
  16. C. Sciancalepore, L. J. Richard, J.-A. Dallery, S. Pauliac, K. Hassan, J. Harduin, H. Duprez, U. Weidenmueller, D. F. G. Gallagher, S. Menezo, and B. Ben Bakir, “Low-crosstalk fabrication-insensitive echelle grating demultiplexers on silicon-on-insulator,” IEEE Photon. Technol. Lett., (published, in press), Dec. 04, 2014 (2014).
  17. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref] [PubMed]
  18. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuit (Wiley, 2nd Edition, 2012), Chap. 3. (2009).
  19. A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

2014 (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

2012 (2)

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

2009 (3)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2005 (2)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Antelius, M.

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics - Energy efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Augendre, E.

Ben Bakir, B.

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19(11), 10317–10325 (2011).
[Crossref] [PubMed]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Bessette, J. T.

Boeuf, F.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Bordel, D.

Bowers, J. E.

Cai, Y.

Camacho-Aguilera, R. E.

Cassan, E.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Cohen, O.

Crozat, P.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Dahlem, M. S.

de Gyves, A. V.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Descos, A.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Fang, A. W.

Fedeli, J. M.

Fedeli, J.-M.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Fédéli, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Franck, T.

Fulbert, L.

Grosse, P.

Gylfason, K. B.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Hartmann, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Heck, J. M.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Hodge, D.

Holzwarth, C. W.

Ippen, E. P.

Jones, R.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Kärtner, F. X.

Keil, U.

Khilo, A.

Kimerling, L. C.

Koch, B. R.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics - Energy efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Kuo, Y. H.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

Kuo, Y.-H.

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Liang, D.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

Liao, L.

Liu, A.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Liu, H.-C.

Lively, E.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

Lyan, P.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Marris-Morini, D.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Michel, J.

Morse, M.

Olivier, N.

Orobtchouk, R.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Paniccia, M. J.

Park, H.

Patel, N.

Porzier, C.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Raday, O.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref] [PubMed]

Roelkens, G.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Romagnoli, M.

Roman, A.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Rubin, D.

Samara-Rubio, D.

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Smith, H. I.

Sohlström, H.

Stankovic, S.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Sun, X.

Sysak, M. N.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref] [PubMed]

Thourhout, D. V.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Virot, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Vivien, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Yariv, A.

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single Wavelength Silicon Evanescent Lasers,” IEEE J. Quantum Electron. 15(3), 535–544 (2009).

IEEE Photon. Technol. Lett. (1)

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

IEEE Technology Lett. (1)

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Technology Lett. 22(11), 739–741 (2010).
[Crossref]

Nat Commun (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat Commun 5, 4957 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics - Energy efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Opt. Express (7)

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref] [PubMed]

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19(11), 10317–10325 (2011).
[Crossref] [PubMed]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonics interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Other (4)

B. Ben Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceau, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on Silicon Lasers,” in ECS. 64, 211-223 (2014).

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuit (Wiley, 2nd Edition, 2012), Chap. 3. (2009).

C. Sciancalepore, L. J. Richard, J.-A. Dallery, S. Pauliac, K. Hassan, J. Harduin, H. Duprez, U. Weidenmueller, D. F. G. Gallagher, S. Menezo, and B. Ben Bakir, “Low-crosstalk fabrication-insensitive echelle grating demultiplexers on silicon-on-insulator,” IEEE Photon. Technol. Lett., (published, in press), Dec. 04, 2014 (2014).

J. Van Campenhout, M. Pantouvaki, P. Verheyen, S. Selvaraja, G. Lepage, H. Yu, W. Lee, J. Wouters, D. Goossens, M. Moelants, W. Bogaerts, and P. Absil, “Low-voltage, low-loss, multi-Gb/s silicon micro-ring modulator based on a MOS capacitor,” in Optical Fiber Communication Conference, OSA Technical Digest, paper OM2E.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Longitudinal (a) and transversal (b) schematics views of the laser. The III-V and the silicon waveguide are separated by a SiO2 gap of 75nm. The DFB grating is etched along the silicon waveguide underneath the III-V active layers. The active region consists in InGaAsP multiple QWs surrounded by p- and n-doped InP layers.
Fig. 2
Fig. 2 Schematic top view of the adiabatic taper in the silicon rib and electric field distributions (|E|) at the input, output and middle of the taper for the even mode. The odd mode is represented at the middle: the taper is designed to get rid of this mode and have all the power in the even mode.
Fig. 3
Fig. 3 (a) Taper coupling efficiency depending on the input and output width of the rib silicon waveguide. The cross represents the dimensions chosen and the dashed square stands for the process variation window. (b) Taper coupling efficiency as a function of the taper length with Win = 0.68µm / Wout = 2.16µm.
Fig. 4
Fig. 4 (a) Schematic side view of the grating underneath the III-V active region with the λ/(4neff) defect in the middle of the grating. The modal repartition is represented when the Si waveguide is or is not etched. (b) Grating coupling constant (κr) calculated values. The cross represents the κr of our design (25.5 cm−1).
Fig. 5
Fig. 5 (a) Schematic side views of the Si waveguide for the first three etching levels: the DFB grating, the rib waveguide with the adiabatic taper and the grating-to-fiber coupler (b) Corresponding top SEM view after each etching.
Fig. 6
Fig. 6 (a) Picture of the III-V wafer bonded on the 200 mm SOI wafer (b) Optical microscope view of the laser.
Fig. 7
Fig. 7 L-I curves with increasing temperature. The left scale gives the output power in the fiber while the right scale gives the output power obtained in the waveguide.
Fig. 8
Fig. 8 Room-temperature LIV (a) and spectrum of the laser at I = 107mA (b). The resolution of the optical spectrum analyser (OSA) was 0.02 nm.
Fig. 9
Fig. 9 (a) Laser spectra as a function of the pumping current for various stage temperatures: 25°C, 35°C, 45°C and 55°C Laser peak wavelength as a function of the dissipated power (CW) (b) as well as of the stage temperature in pulsed regime (c).

Tables (1)

Tables Icon

Table 1 III-V epitaxial growth layer structure

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ (W rib )= δ( W rib ) κ z 0
δ= β III-V β Si 2
κ z 0 = β even β odd 2
γ(z)=tan(arcsin(u))
u=2 κ z 0 ε ( z-z 0 )
κ r = 2Δ n eff λ
Δ n eff = n eff2 n eff1
a= 2λ n eff ¯

Metrics