Abstract

The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in mid infrared (3-5µm) Quantum Cascade Lasers

Manijeh Razeghi, Neelanjan Bandyopadhyay, Yanbo Bai, Quanyong Lu, and Steven Slivken
Opt. Mater. Express 3(11) 1872-1884 (2013)

Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation

Kazuue Fujita, Masahiro Hitaka, Akio Ito, Masamichi Yamanishi, Tatsuo Dougakiuchi, and Tadataka Edamura
Opt. Express 24(15) 16357-16365 (2016)

Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Kazarinov and R. A. Suris, “Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  3. M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” IEEE J. Quantum Electron. 15(3), 941–951 (2009).
    [Crossref]
  4. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  5. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
    [Crossref]
  6. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [Crossref]
  7. M. Razeghi, The MOCVD Challenge: A survey of GaInAsP-InP and GaInAsP-GaAs for Photonic and Electronic Device Applications, Electronic Materials and Devices, ed.II, (CRC, 2010).
  8. M. Razeghi, Technology of Quantum Devices (Springer Science, 2010).
  9. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  10. Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
    [Crossref]
  11. Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
    [Crossref]
  12. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  13. J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
    [Crossref]
  14. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
    [Crossref]
  15. A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
    [Crossref]
  16. Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
    [Crossref]
  17. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
    [Crossref]
  18. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
    [Crossref]
  19. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
    [Crossref]
  20. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
    [Crossref]
  21. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20(19), 20894–20901 (2012).
    [Crossref] [PubMed]
  22. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
    [Crossref]
  23. A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
    [Crossref]
  24. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
    [Crossref]
  25. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
    [Crossref]
  26. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
    [Crossref]
  27. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
    [Crossref] [PubMed]
  28. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [Crossref]
  29. N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
    [Crossref]
  30. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
    [Crossref]
  31. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
    [Crossref]
  32. S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
    [Crossref]
  33. B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
    [Crossref]
  34. L. K. Hoffmann, M. Klinkmüller, E. Mujagić, M. P. Semtsiv, W. Schrenk, W. T. Masselink, and G. Strasser, “Tree array quantum cascade laser,” Opt. Express 17(2), 649–657 (2009).
    [Crossref] [PubMed]
  35. W. Zhou, S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Wide electrical tunable quantum cascade lasers array with on-chip beam combiner,” under preparation (2014).
  36. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
    [Crossref]
  37. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
    [Crossref]
  38. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
    [Crossref]
  39. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).
  40. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
    [Crossref] [PubMed]
  41. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
    [Crossref]
  42. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
    [Crossref]
  43. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
    [Crossref]
  44. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
    [Crossref]
  45. B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).
  46. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
    [Crossref]
  47. Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
    [Crossref]

2014 (5)

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

2013 (6)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

2012 (9)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “High-power room-temperature continuous-wave mid-infrared interband cascade lasers,” Opt. Express 20(19), 20894–20901 (2012).
[Crossref] [PubMed]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

2011 (4)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

2010 (7)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

2009 (4)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

L. K. Hoffmann, M. Klinkmüller, E. Mujagić, M. P. Semtsiv, W. Schrenk, W. T. Masselink, and G. Strasser, “Tree array quantum cascade laser,” Opt. Express 17(2), 649–657 (2009).
[Crossref] [PubMed]

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” IEEE J. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

2008 (1)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

2007 (2)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

2006 (1)

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

2004 (1)

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

1971 (1)

R. Kazarinov and R. A. Suris, “Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Abell, J.

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Amann, M. C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Audet, R. M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

Barbieri, S.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

Beck, M.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Belkin, M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Belkin, M. A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Bewley, W. W.

Bismuto, A.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

Boehm, G.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Bour, D.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Caffey, D.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Canedy, C. L.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Colombelli, R.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Corzine, S.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Day, T.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Diehl, L.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Evans, A.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

Faist, J.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fan, J.-Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Hinkov, B.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Hoffmann, L. K.

Hofler, G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Jang, M.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Kazarinov, R.

R. Kazarinov and R. A. Suris, “Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Kim, C. S.

Kim, M.

Klinkmüller, M.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Kuboya, S.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Lee, B. G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Liu, P. Q.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Lu, Q. Y.

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

MacArthur, J.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Masselink, W. T.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Merritt, C. D.

Meyer, J. R.

Mujagic, E.

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Pflugl, C.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Pushkarsky, M.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” IEEE J. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

M. Razeghi, The MOCVD Challenge: A survey of GaInAsP-InP and GaInAsP-GaAs for Photonic and Electronic Device Applications, Electronic Materials and Devices, ed.II, (CRC, 2010).

Riedi, S.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

Schrenk, W.

Selcuk, E.

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Semtsiv, M. P.

Sirtori, C.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Slivken, S.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and S. Slivken, “Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers,” Opt. Mater. Express 3(11), 1872–1884 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

Strasser, G.

Suris, R. A.

R. Kazarinov and R. A. Suris, “Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Vijayraghavan, K.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Vurgaftman, I.

Wang, X.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yu, J. S.

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

Zhang, H. A.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Zhang, W.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

Appl. Phys. Lett. (24)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett. 99(26), 261104 (2011).
[Crossref]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 100(8), 081106 (2012).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature,” Appl. Phys. Lett. 85(12), 2166–2168 (2004).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~ 3.76 μm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based qantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with a broad tunability and continuous wave operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz Sources Based on Čerenkov Difference-Frequency Generation in Quantum Cascade Lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103(1), 011101 (2013).
[Crossref]

B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 97, 131112 (2010).

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105(20), 201102 (2014).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” IEEE J. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

Nat. Photonics (5)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Nature (1)

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (3)

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers,” Proc. SPIE 9100, 910016 (2014).

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Dual Section Quantum Cascade Lasers with Wide Electrical Tuning,” Proc. SPIE 8631, 86310P (2013).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, “Room temperature continuous wave THz quantum cascade laser source with high power operation,” Proc. SPIE 9199, 919902 (2014).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3 μm spectral range,” Semicond. Sci. Technol. 27(4), 045013 (2012).
[Crossref]

Sov. Phys. Semicond. (1)

R. Kazarinov and R. A. Suris, “Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Other (3)

M. Razeghi, The MOCVD Challenge: A survey of GaInAsP-InP and GaInAsP-GaAs for Photonic and Electronic Device Applications, Electronic Materials and Devices, ed.II, (CRC, 2010).

M. Razeghi, Technology of Quantum Devices (Springer Science, 2010).

W. Zhou, S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Wide electrical tunable quantum cascade lasers array with on-chip beam combiner,” under preparation (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) QCL performance improvement from 2007 to 2011. (b) Comparison of the sub-efficiencies and the wall plug efficiency in 2007 and 2011.

Fig. 2
Fig. 2

Experimental and simulated x-ray diffraction curve of a 30-stage laser core.

Fig. 3
Fig. 3

P-I-V performances of QCLs in the 3-4 μm wavelength range.

Fig. 4
Fig. 4

(a) Schematic of the heterogeneous broadband QCL. (b) Structure of an 8.2μm QCL.

Fig. 5
Fig. 5

(a) Electroluminescence and laser emission spectrum of the separate composite well QCLs. (b) EL and DFB spectra, along with the DFB threshold current densities of the broadband QCL.

Fig. 6
Fig. 6

(a) Schematic diagram of the SGDFB geometry. (b) Spectral coverage achieved with discrete SGDFB lasers with different grating periods on a single wafer.

Fig. 7
Fig. 7

(a) Schematic diagram of a digital concatenated grating and an oblique image of a etched dual grating test piece. (b) Selected emission spectra from a tunable DCG-SCGDFB operating at room temperature.

Fig. 8
Fig. 8

(a). The schematic diagram of the three section QCL source, which contains eight SGDFB lasers and a tree-array beam combiner section. (b). The laser structure and the three section independent biasing scheme.

Fig. 9
Fig. 9

(a). Composite DFB grating with two wavelength components (lower part) and its Fourier transform (upper part). (b). Schematics of Čerenkov phase matching (upper part) and epi-down mounted THz device (lower part).

Fig. 10
Fig. 10

Recent development of THz QCL sources with high peak power (a), continuous wave operation (b), and wide range frequency tenability (c), at room temperature.

Metrics