Abstract

We demonstrate a method to independently and arbitrarily tailor the spatial profile of light of multiple wavelengths and we show possible applications to ultracold atoms experiments. A single spatial light modulator is programmed to create a pattern containing multiple spatially separated structures in the Fourier plane when illuminated with a single wavelength. When the modulator is illuminated with overlapped laser beams of different wavelengths, the position of the structures is wavelength-dependent. Hence, by designing their separations appropriately, a desired overlap of different structures at different wavelengths is obtained. We employ regional phase calculation algorithms and demonstrate several possible experimental scenarios by generating light patterns with 670 nm, 780 nm and 1064 nm laser light which are accurate to the level of a few percent. This technique is easily integrated into cold atom experiments, requiring little optical access.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Applications of spatial light modulators in atom optics

D. McGloin, G.C. Spalding, H. Melville, W. Sibbett, and K. Dholakia
Opt. Express 11(2) 158-166 (2003)

3D interferometric optical tweezers using a single spatial light modulator

Ethan Schonbrun, Rafael Piestun, Pamela Jordan, Jon Cooper, Kurt D Wulff, Johannes Courtial, and Miles Padgett
Opt. Express 13(10) 3777-3786 (2005)

Tilt-effect of holograms and images displayed on a spatial light modulator

Walter Harm, Clemens Roider, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 23(23) 30497-30511 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics (World Scientific, 2011).
  2. C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
    [Crossref] [PubMed]
  3. K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
    [Crossref]
  4. C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
    [Crossref]
  5. S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004).
    [Crossref]
  6. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
    [Crossref]
  7. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, and A. S. Arnold, “Optical Ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
    [Crossref] [PubMed]
  8. G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
    [Crossref]
  9. G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
    [Crossref]
  10. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2721 (2012).
    [Crossref] [PubMed]
  11. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
  12. G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .
  13. J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
    [Crossref]
  14. R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
    [Crossref]
  15. H. Uncu and D. Tarhan, “Bose-Einstein condensate in a linear trap with a dimple potential,” Commun. Theor. Phys. 59629 (2013)
    [Crossref]
  16. J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
    [Crossref]
  17. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49, 5993–5996 (2010).
    [Crossref]
  18. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20, 25130–25136 (2012).
    [Crossref] [PubMed]
  19. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
    [Crossref]
  20. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–5325 (2004).
    [Crossref] [PubMed]
  21. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008).
    [PubMed]
  22. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22, 18473–18482 (2014).
    [Crossref] [PubMed]
  23. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref] [PubMed]
  24. T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
    [Crossref] [PubMed]
  25. E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .
  26. C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
    [Crossref]
  27. D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
    [Crossref] [PubMed]
  28. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22, 20530–20541 (2014).
    [Crossref] [PubMed]

2014 (6)

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22, 18473–18482 (2014).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22, 20530–20541 (2014).
[Crossref] [PubMed]

T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
[Crossref] [PubMed]

2013 (2)

R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
[Crossref]

H. Uncu and D. Tarhan, “Bose-Einstein condensate in a linear trap with a dimple potential,” Commun. Theor. Phys. 59629 (2013)
[Crossref]

2012 (3)

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2721 (2012).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20, 25130–25136 (2012).
[Crossref] [PubMed]

2011 (3)

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

2010 (1)

2009 (2)

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

2008 (3)

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
[Crossref] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008).
[PubMed]

2007 (1)

2006 (1)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

2004 (2)

2003 (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[Crossref]

Arnold, A. S.

Awazu, S.

Barredo, D.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Baumert, M.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Becker, C.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Béguin, L.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Bergamini, S.

Bernet, S.

Bernier, J.-S.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Bloch, I.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Bongs, K.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Boshier, M. G.

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Boyer, V.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Brainis, E.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Brandt, L.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Bromley, S. L.

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

Browaeys, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004).
[Crossref]

Bruce, G. D.

T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
[Crossref] [PubMed]

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Cassettari, D.

T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
[Crossref] [PubMed]

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

Chandrashekar, C. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Cheneau, M.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics (World Scientific, 2011).

Cormack, E.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

Cotta, D.

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Darquié, B.

De Leo, L.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Deb, A. B.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

DeMarco, B.

Dong, J.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Dörscher, S.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Ducin, I.

Ellinas, D.

Endres, M.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Foot, C. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Franke-Arnold, S.

Fukuhara, T.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Gangardt, D. M.

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

Gardiner, S. A.

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

Gaunt, A. L.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2721 (2012).
[Crossref] [PubMed]

Georges, A.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Gerbier, F.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Ghassib, H. B.

R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
[Crossref]

Girkin, J. M.

Godun, R. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Grangier, P.

Guéry-Odelin, D.

C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics (World Scientific, 2011).

Hadzibabic, Z.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2721 (2012).
[Crossref] [PubMed]

Haller, E.

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Harte, T.

Helm, J. L.

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

Henderson, K.

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Himsworth, M.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Hu, B.

Hudson, J.

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Ichihashi, Y.

Ito, T.

Jacubowiez, L.

Jesacher, A.

Jia, J.

Johnson, M. Y. H.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

Jones, M.

Kakarenko, K.

Keeling, J.

Kelly, A.

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Köhl, M.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Kollath, C.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Kolodziejczyk, A.

Kronjäger, J.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Krüger, P.

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

Kuhn, A.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Kuhr, S.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Labuhn, H.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Laczik, Z. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Lahaye, T.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Leach, J.

Lembessis, V. E.

Lerner, I. V.

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

Li, X.

Liu, J.

MacCormick, C.

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Makowski, M.

Masuda, N.

Mayoh, J.

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

Muldoon, C.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Nakayama, H.

Nogrette, F.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Öhberg, P.

Okano, K.

Padgett, M. J.

Pasienski, M.

Peaudecerf, B.

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Ravets, S.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Richards, D.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

Richter, E.-M.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Ritsch-Marte, M.

Rooney, S. J.

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

Ryu, C.

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Sakhel, A. R.

R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
[Crossref]

Sakhel, R. R.

R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
[Crossref]

Salomon, C.

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

Schauß, P.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Sengstock, K.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Sherson, J. F.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Shimobaba, T.

Simpson, D. P.

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

Smirne, G.

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Soltan-Panahi, P.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Stellmer, S.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Stuart, D.

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Suszek, J.

Sypek, M.

Takada, N.

Tarhan, D.

H. Uncu and D. Tarhan, “Bose-Einstein condensate in a linear trap with a dimple potential,” Commun. Theor. Phys. 59629 (2013)
[Crossref]

Torralbo-Campo, L.

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

Uncu, H.

H. Uncu and D. Tarhan, “Bose-Einstein condensate in a linear trap with a dimple potential,” Commun. Theor. Phys. 59629 (2013)
[Crossref]

Vernier, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Wang, Y.

Weiss, C.

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

Weitenberg, C.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Wright, A. J.

Xue, G.

Zhang, Z.

Appl. Opt. (1)

Commun. Theor. Phys. (1)

H. Uncu and D. Tarhan, “Bose-Einstein condensate in a linear trap with a dimple potential,” Commun. Theor. Phys. 59629 (2013)
[Crossref]

J. Low Temp. Phys. (1)

R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, “Nonequilibrium dynamics of a Bose–Einstein condensate excited by a red laser inside a power-law trap with hard walls,” J. Low Temp. Phys. 173, 177–206 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K. Sengstock, “Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates,” Nat. Phys. 4, 496–501 (2008).
[Crossref]

Nature (1)

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, “Control and manipulation of cold atoms in optical tweezers,” New J. Phys. 14, 073051 (2012).
[Crossref]

Opt. Express (8)

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–5325 (2004).
[Crossref] [PubMed]

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, and A. S. Arnold, “Optical Ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
[Crossref] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008).
[PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20, 25130–25136 (2012).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22, 18473–18482 (2014).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22, 20530–20541 (2014).
[Crossref] [PubMed]

T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
[Crossref] [PubMed]

Opt. Rev. (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[Crossref]

Phys. Rev. A (4)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, “Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry,” Phys. Rev. A 89, 033610 (2014).
[Crossref]

J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, and M. Köhl, “Cooling fermionic atoms in optical lattices by shaping the confinement,” Phys. Rev. A 79, 061601 (2009).
[Crossref]

G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A 84, 053410 (2011).
[Crossref]

Phys. Rev. Lett. (1)

D. P. Simpson, D. M. Gangardt, I. V. Lerner, and P. Krüger, “One-dimensional transport of bosons between weakly linked reservoirs,” Phys. Rev. Lett. 112, 100601 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Phys. Scr. (1)

G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. Scr. T143, 014008 (2011).
[Crossref]

Sci. Rep. (1)

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2721 (2012).
[Crossref] [PubMed]

Other (3)

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” http://arxiv.org/abs/1409.3151 .

C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics (World Scientific, 2011).

E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of fermionic potassium in a quantum-gas microscope,” http://arxiv.org/abs/1503.02005 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Target pattern containing Gaussians at r1064 and r780 from the centre of the output plane, which is the location of undiffracted light in experimental light profiles. The ring-shaped feature is accumulation of light at the boundary of the region with amplitude-freedom, which is typical of the MRAF algorithm. b) Phase modulation required to achieve this target pattern. c) Fourier-plane intensity acquired with 780 nm (blue) and 1064 nm (red) illumination.

Fig. 2
Fig. 2

a) Intensity profile of diffraction limited spots at 1064 nm (red) and 670 nm (blue). b) and c) Resulting trapping potential, calculated as the difference between the two intensity profiles. The thickness of the ring is < 50 μm, below the diffraction limit of either colour. d) An array of three sub-diffraction-limited ring traps.

Fig. 3
Fig. 3

Target pattern for lattice-based entropy reduction, showing the subset of the plane containing the measure regions to be used within the feedback algorithm. The target consists of two rings and a Gaussian, designed for 670 nm, 780 nm and 1064 nm. The blue, green and red regions will be optimised for 670 nm, 780 nm and 1064 nm respectively.

Fig. 4
Fig. 4

Entropy-separation light pattern illuminated with a) 670 nm, b) 780 nm, c) 1064 nm, d) all three wavelengths. e) Region where the three wavelengths overlap: trap profile versus position for 670 nm (blue) and 1064 nm (red) and the resultant combined trapping potential (black). The magic-wavelength light (green) allows spatially-selective microwave state transfer of atoms outside the resultant potential, after which a resonant light pulse (which does not need to be spatially controlled and may be directed orthogonally to the SLM-generated pattern) can selectively remove the transferred atoms.

Fig. 5
Fig. 5

A selection of light patterns suitable for cold atom experiments, generated with 1064 nm (colour) and 780 nm (gray-scale, shown with background transparency for clarity). The scale bar in each image denotes 50 μm. a) Elliptical red-detuned trap, partially illuminated by off-resonant light with a sharp edge for phase manipulation of Bose–Einstein condensates. b) Red-detuned ring trap with blue-detuned barrier. c) Red-detuned double well, connected by a thin channel interrupted by blue-detuned barriers. d) Red-detuned trap with additional offset attractive dimple, bounded by a blue-detuned ring to create hard walls to the trapping potential.

Metrics