Abstract

We propose a tunable circular polarization analyzer based on a graphene-coated spiral dielectric lens. Spatially separated solid dot shape (or donut shape) field can be achieved if the geometric shape of analyzer and incident circular polarization possess the opposite (or same) chirality. Moreover, distinct from the narrow working bandwidth of a traditional circular polarization analyzer, the focusing and defocusing effects in the analyzer are independent of the chemical potential of graphene, and depend only on the dielectric permittivities and the grating occupation ratio. Combined with the strong tunability of graphene plasmons, the operation wavelength of analyzer can be tuned by adjusting the graphene chemical potential without degrading the performance. The proposed analyzer could be used in applications in chemistry or biology, such as analyzing the physiological properties of chiral molecules based on circular polarization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene circular polarization analyzer based on spiral metal triangle antennas arrays

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(19) 24730-24737 (2015)

Graphene circular polarization analyzer based on unidirectional excitation of plasmons

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(25) 32420-32428 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [Crossref]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  5. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  6. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  7. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  8. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  9. Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
    [Crossref]
  10. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  11. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
    [Crossref] [PubMed]
  12. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
    [Crossref]
  13. W. Chen, G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer,” Opt. Express 20(24), 26299–26307 (2012).
    [Crossref] [PubMed]
  14. W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
    [Crossref] [PubMed]
  15. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [Crossref] [PubMed]
  16. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  17. L. Tang, J. Du, C. Du, P. Zhu, and H. Shi, “Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems,” Opt. Express 22(17), 20214–20222 (2014).
    [Crossref] [PubMed]
  18. T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
    [Crossref]
  19. L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
    [Crossref]
  20. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  21. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]
  22. M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
    [Crossref] [PubMed]
  23. A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
    [PubMed]
  24. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  25. X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
    [Crossref]
  26. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588 (1997).
    [Crossref]
  27. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  28. J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
    [PubMed]
  29. X. T. Kong, B. Bai, and Q. Dai, “Graphene plasmon propagation on corrugated silicon substrates,” Opt. Lett. 40(1), 1–4 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[PubMed]

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

L. Tang, J. Du, C. Du, P. Zhu, and H. Shi, “Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems,” Opt. Express 22(17), 20214–20222 (2014).
[Crossref] [PubMed]

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

2013 (5)

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

2012 (3)

2011 (4)

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

2010 (4)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

2009 (3)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (1)

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

1997 (2)

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Abeysinghe, D. C.

Alonso-González, P.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Arzubiaga, L.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Asger Mortensen, N.

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Bai, B.

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Botello-Méndez, A. R.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Casanova, F.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chacham, H.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Charlier, J. C.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Chen, W.

Chui, S.-T.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Chuvilin, A.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Dai, Q.

Du, C.

Du, J.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Friesem, A. A.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Geim, A. K.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Glasberg, S.

Gómez-Díaz, J. S.

Gramotnev, D. K.

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Han, D.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Hansen, O.

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hillenbrand, R.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Hueso, L. E.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kong, X. T.

Lherbier, A.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Li, J.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lin, F.

Lin, Z.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Matos, M. J.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Mazzoni, M. S.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Nelson, R. L.

Novoselov, K. S.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Peres, N. M. R.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Perruisseau-Carrier, J.

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Ren, G.

Rosenblatt, D.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Rui, G.

Schnell, M.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588 (1997).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, H.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, L.

Uhd Jepsen, P.

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vogel, M. W.

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wu, Z.

Xiao, S.

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yan, W.

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Yang, C.

Yang, S.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhan, Q.

Zhan, T.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, H.

Zheng, S.

Zhu, B.

Zhu, P.

Zhu, X.

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[PubMed]

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

Zi, J.

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

ACS Nano (1)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Zhu, W. Yan, P. Uhd Jepsen, O. Hansen, N. Asger Mortensen, and S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102(13), 131101 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Nanotechnology (1)

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Lett. A (1)

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[Crossref]

Phys. Rev. B (2)

T. Zhan, D. Han, X. Hu, X. Liu, S.-T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Physics-Uspekhi (1)

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

Rev. Mod. Phys. (1)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of the excitation implementation (a) and Left-handed graphene-coated spiral dielectric lens (b) under normal incident, Left-hand circular polarized light.
Fig. 2
Fig. 2 (a) The dependencies of normalized reflection spectra with different grating periods (Λ = 100 nm, 150 nm, 200 nm and 250 nm). (b) The derived excitation wavelengths of 1st order mode (N = 1) from Eq. (3) and numerical simulations. The wavelength spans from 6 μm to 11 μm. The dielectric permittivity εd = 11, μc = 0.64eV and occupation ratio f = 0.5. Illustrated in the inset of (b) are the Ex profiles of the two orders’ resonant modes in spectrum under Λ = 200 nm (circle marker a for N = 1 and b for N = 2).
Fig. 3
Fig. 3 (a) The dependencies of normalized reflection spectra with different chemical potentials are presented. (b) The derived excitation wavelengths of 1st order mode (N = 1) from Eq. (3) and numerical simulations. The wavelength spans from 6 μm to 11 μm with gratings period Λ = 150 nm.
Fig. 4
Fig. 4 The electric field intensity |E|2 distributions on the surface of graphene under x (a,b) or y (c,d) linear polarized light. The wavelength is λ = 6.2 μm, the dielectric permittivity is εd = 11, the period is Λ = 150 nm, the chemical potential of graphene is μc = 0.7 eV and occupation ratio f = 0.2.
Fig. 5
Fig. 5 The electric field intensity |E|2 distributions on the surface of graphene under Right-handed (a,b) or Left-handed (c,d) circular polarized light are shown. The wavelength is λ = 6.2 μm, the dielectric permittivity is εd = 11, the period is Λ = 150 nm and f = 0.2, the chemical potential of graphene is μc = 0.7 eV and wavelength λ = 6.2 μm.
Fig. 6
Fig. 6 The circular polarization extinction ratio of the spiral lens with respect to detector size a under various incident wavelengths (a) and with respect to incident wavelength under various chemical potentials (b). The chemical potential is μc = 0.64 eV in (a) and the length is a = 20 nm in (b). All the configurations are same with those in Fig. 5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β π 2 ε 0 ( ε r1 + ε r2 ) e 2 μ c (1+ j ωτ ) ω 2
Re( β 1 ) β 0 sinθ= 2πN Λ
ω (N=1)= 2 e 2 × E f 2 ε 0 ( ε r1 + ε r2 )Λ
r= r 0 d 2π φ
β 1 β 2 = f ε d +(2f) ε r2 ε d + ε r2 = 1 2n+1

Metrics