Abstract

We have demonstrated an optically pumped polymer microring laser fabricated by two photon polymerization (TPP) of SU-8. The gain medium is an organic dye (Rhodamine B) doped in SU-8, and the laser cavity is a double coupled microring structure. Single mode lasing was obtained from the two coupled rings each with 30 µm and 29 µm radii using Vernier effect. Low laser threshold of 0.4 µJ/mm2 is achieved using 1 µm wide polymer waveguides and the quality factor is greater than 104 at 612.4 nm wavelength. The lasing remained stable with pump energies from threshold to energies as high as 125 times the threshold.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct laser writing for active and passive high-Q polymer microdisks on silicon

Tobias Grossmann, Simone Schleede, Mario Hauser, Torsten Beck, Michael Thiel, Georg von Freymann, Timo Mappes, and Heinz Kalt
Opt. Express 19(12) 11451-11456 (2011)

Characterization of low-threshold polymer microring lasers using optical microscopy and spectral analysis

Grace Jordan, Takeyuki Kobayashi, and Werner J. Blau
J. Opt. Soc. Am. B 24(4) 808-812 (2007)

On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing

Jintian Lin, Shangjie Yu, Yaoguang Ma, Wei Fang, Fei He, Lingling Qiao, Limin Tong, Ya Cheng, and Zhizhan Xu
Opt. Express 20(9) 10212-10217 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  2. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photon. Rev. 6(4), 419–462 (2012).
    [Crossref]
  3. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
    [Crossref] [PubMed]
  4. N. Tsutsumi and T. Ishibashi, “Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator,” Opt. Express 17(24), 21698–21703 (2009).
    [Crossref] [PubMed]
  5. F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
    [Crossref]
  6. J. Wang, H. Dong, J. Fan, R. Li, L. Zhang, and K. Y. Wong, “Near-infrared distributed feedback solgel lasers by intensity modulation and polarization modulation,” Appl. Opt. 50(33), 6248–6253 (2011).
    [Crossref] [PubMed]
  7. T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett. 99(15), 153307 (2011).
    [Crossref]
  8. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
    [Crossref]
  9. H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
    [Crossref]
  10. J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing,” Opt. Lett. 36(15), 2871–2873 (2011).
    [Crossref] [PubMed]
  11. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  12. Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
    [Crossref] [PubMed]
  13. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
    [Crossref]
  14. W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
    [Crossref]
  15. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
    [Crossref] [PubMed]
  16. L. Shi-Yang, F. Hong-Hua, F. Jing, X. Hong, Z. Tie-Qiang, C. Qi-Dai, and S. Hong-Bo, “Highly stable on-chip embedded organic whispering gallery mode lasers,” J. Lightwave Technol. 32(13), 2415–2419 (2014).
    [Crossref]
  17. L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
    [Crossref]
  18. F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
    [Crossref]
  19. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33(10), 1150–1152 (2008).
    [Crossref] [PubMed]
  20. T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
    [Crossref]
  21. V. W. Chen, N. Sobeshchuk, C. Lafargue, E. S. Mansfield, J. Yom, L. R. Johnstone, J. M. Hales, S. Bittner, S. Charpignon, D. Ulbricht, J. Lautru, I. Denisyuk, J. Zyss, J. W. Perry, and M. Lebental, “Three-dimensional organic microlasers with low lasing thresholds fabricated by multiphoton and UV lithography,” Opt. Express 22(10), 12316–12326 (2014).
    [PubMed]
  22. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [Crossref]
  23. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  24. D. G. Rabus, Integrated Ring Resonators (2007).
  25. T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

2012 (2)

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photon. Rev. 6(4), 419–462 (2012).
[Crossref]

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

2011 (7)

2010 (3)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

N. Tsutsumi and T. Ishibashi, “Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator,” Opt. Express 17(24), 21698–21703 (2009).
[Crossref] [PubMed]

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

2008 (1)

2007 (2)

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Bando, K.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Beck, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Bittner, S.

Bog, U.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Bouchoule, S.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Boudrioua, A.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Byrne, N.

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett. 99(15), 153307 (2011).
[Crossref]

Cambril, E.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Chakaroun, M.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Charpignon, S.

Chen, Q.-D.

Chen, V. W.

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Cunningham, B. T.

Denisyuk, I.

Dong, H.

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Fabre, N.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Fan, J.

Fan, X.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Fischer, A.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Floess, D.

Friedmann, C.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Fujiwara, S.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Ge, C.

Gourdon, F.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photon. Rev. 6(4), 419–462 (2012).
[Crossref]

Grossmann, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Hales, J. M.

Haraichi, S.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Hauser, M.

He, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[Crossref]

Hong, X.

Hong-Bo, S.

Hong-Hua, F.

Hotta, S.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Ishibashi, T.

Ishizumi, A.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Jian, X.

Jing, F.

Johnstone, L. R.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Kalt, H.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Klinkhammer, S.

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Kobayashi, S.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Kobayashi, T.

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett. 99(15), 153307 (2011).
[Crossref]

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Ku, J.-F.

Lafargue, C.

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Lautru, J.

Lebental, M.

Lee, W.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Lemmer, U.

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Li, R.

Liu, L.

Lu, M.

Mansfield, E. S.

Mappes, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Masumoto, Y.

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Oe, K.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Özdemir, S. K.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[Crossref]

Perry, J. W.

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photon. Rev. 6(4), 419–462 (2012).
[Crossref]

Qi-Dai, C.

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators (2007).

Reddy, K.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Sasaki, F.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19(12), 11451–11456 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Shang, L.

Shi-Yang, L.

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Sobeshchuk, N.

Solard, J.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Sun, H.-B.

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

Suter, J. D.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

Takeaki, R.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Tan, Y.

Thiel, M.

Tie-Qiang, Z.

Tomita, S.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Tsutsumi, N.

Ulbricht, D.

Vannahme, C.

T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
[Crossref] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

von Freymann, G.

Wang, J.

Wienhold, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Wong, K. Y.

Xu, L.

Yacomotti, A.-M.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

Yamashita, K.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Yanagi, H.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Yom, J.

Zhang, L.

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhang, R.

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zyss, J.

Adv. Mater. (1)

F. Sasaki, S. Kobayashi, S. Haraichi, S. Fujiwara, K. Bando, Y. Masumoto, and S. Hotta, “Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in si/sio2 substrates,” Adv. Mater. 19(21), 3653–3655 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett. 99(15), 153307 (2011).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A.-M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett. 100(21), 213304 (2012).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett. 98(6), 061103 (2011).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (2)

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[Crossref]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photon. Rev. 6(4), 419–462 (2012).
[Crossref]

Light Sci. Appl. (1)

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

D. G. Rabus, Integrated Ring Resonators (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image of double microring laser with 29 µm and 30 µm radii fabricated using femtosecond laser direct writing on dye doped polymer (b) SEM image of the interaction region of the two adjacent microrings (c) Top of view SEM representation of the two microrings at the interaction region. Waveguides with 1 µm width are separated by a 650 nm air gap (d) Schematic of the experimental setup used for laser emission characterization. The green pump pulse passes through a wave plate and polarizer for power adjustment a beam splitter for energy measurement. The sample’s emission and the pump beam collected by a 20x objective passes through a notch filter to filter the pump light, then a 10x objective focused on the sample, couples the emission to a fiber attached spectrometer.

Fig. 2
Fig. 2

Single mode lasing spectra of the double microring laser with radii of 29 µm and 30 µm for various pump energies. The lasing wavelength is centered at 612.4 nm with 0.6 nm FWHM (0.6 nm spectrometer resolution) and is highly stable with the increasing pump energy. The minor peaks at the wavelengths of 627 nm and 634.5 nm are present at the pump energies higher than 10 times the threshold.

Fig. 3
Fig. 3

Spectrally integrated emission intensity of double microring laser as a function of pump energy. The solid line gives the lasing threshold to be 0.4 µJ/mm2.

Fig. 4
Fig. 4

The spectra of (a) SU-8 doped with RhB microdisk, (b) single microring and (c) double microring lasers at 50 µJ/mm2 of the pump energy. The lasing threshold and spontaneous emission decreases from microdisk to single ring and to double microring. The double ring laser shows a much cleaner spectral behavior. The number of laser modes have been reduced for the double microring laser even at very high pump energies (125 times the threshold).

Fig. 5
Fig. 5

(a) ASE spectrum of the RhB doped SU-8 thin film pumped by nanosecond green laser (dotted line) and dash-dot line shows the spectra of double microring cavity based on Eq. (2). The solid line depicts the experimental measurements of the double microring laser emission spectra. (b) The calculated (solid line) and measured (dashed line) spectra of fabricated single mode laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 2π n eff ( r 2 r 1 )
I= e 4παr κ 2 1+ e 4παr ( 1 κ 2 )2 e 2παr 1 κ 2 cos( 4 π 2 n eff r λ )
I= e 4 παr 1 κ 2 1+ e 4 παr 1 ( 1 κ 2 )2 e 2 παr 1 1 κ 2 cos( 4 π 2 n eff r 1 λ ) × e 4 παr 2 κ 2 1+ e 4 παr 2 ( 1 κ 2 )2 e 2 παr 2 1 κ 2 cos( 4 π 2 n eff r 2 λ )
Q= 2 π 2 rn eff λ 1 κ 2 κ 2

Metrics