Abstract

We theoretically introduced a design paradigm and tool by extending the circuit functionalities from radio frequency to near infrared domain, and a broad band-stop filter, is successfully demonstrated by cascading triple layers of nano-square arrays. The feasibility is confirmed by its consistency with the rigorous FDTD calculation. Moreover, such a third-order Butterworth filter is not only insensitive to the incident angle and but also to input light’s polarization. The new paradigm forms a theoretical foundation for designing optical devices and also enriches the classic circuit operations at the optical frequency region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion synthesis with multi-ordered metatronic filters

Y. Li, I. Liberal, and N. Engheta
Opt. Express 25(3) 1937-1948 (2017)

Nanoparticle array based optical frequency selective surfaces: theory and design

Chiya Saeidi and Daniel van der Weide
Opt. Express 21(13) 16170-16180 (2013)

Theoretical analysis and design of a near-infrared broadband absorber based on EC model

Qing Zhang, Lihua Bai, Zhengyuan Bai, Pidong Hu, and Chengpu Liu
Opt. Express 23(7) 8910-8917 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).
  2. K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antenn. Propag. 55(5), 1239–1245 (2007).
    [Crossref]
  3. M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
    [Crossref]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  5. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  6. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  7. Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
    [Crossref] [PubMed]
  8. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2-3), 61–137 (1996).
    [Crossref]
  9. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  10. A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
    [Crossref] [PubMed]
  11. M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
    [Crossref]
  12. A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
    [Crossref]
  13. J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
    [Crossref] [PubMed]
  14. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
    [Crossref] [PubMed]
  15. H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
    [Crossref] [PubMed]
  16. H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
    [Crossref]
  17. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
    [Crossref]
  18. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).
  19. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  21. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [Crossref]
  22. Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
    [Crossref]
  23. Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
    [Crossref]
  24. J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
    [Crossref]
  25. C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
    [Crossref] [PubMed]
  26. C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
    [Crossref]
  27. P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B 30(1), 27–32 (2013).
    [Crossref]

2015 (2)

Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

2014 (2)

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

2013 (4)

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B 30(1), 27–32 (2013).
[Crossref]

2012 (4)

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

2009 (2)

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[Crossref]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

2008 (4)

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

2007 (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antenn. Propag. 55(5), 1239–1245 (2007).
[Crossref]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1996 (1)

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2-3), 61–137 (1996).
[Crossref]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Al-Joumayly, M.

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[Crossref]

Alù, A.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Behdad, N.

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[Crossref]

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antenn. Propag. 55(5), 1239–1245 (2007).
[Crossref]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Caglayan, H.

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Conway, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dong, J. W.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Edwards, B.

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Elias, S.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Engheta, N.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Hong, S. H.

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Hu, P.

Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Jeon, H.-J.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Jeong, H. S.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Jung, H.-T.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kagan, C. R.

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Kang, S.-W.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kim, Yu. H.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kumar, P.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Li, J.

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

Li, P. C.

Li, X.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Liu, C. P.

Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Monticone, F.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Oh, M. B.

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Ratchford, D.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Saeidi, C.

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

Sarabandi, K.

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antenn. Propag. 55(5), 1239–1245 (2007).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2-3), 61–137 (1996).
[Crossref]

Shi, J.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

Staffaroni, M.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

Sun, Y.

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Tan, J. X.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Tang, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

van der Weide, D.

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

Vedantam, S.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

Wang, H. Z.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Wu, Y.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Xie, Y. B.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Yablonovitch, E.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Young, M.

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

Yu, E. T.

Zhang, Q.

Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Appl. Phys. Lett. (1)

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antenn. Propag. 55(5), 1239–1245 (2007).
[Crossref]

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[Crossref]

J. Appl. Phys. (1)

M. G. Silveirinha, A. Alù, J. Li, and N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

NPG Asia Mater. (1)

H. S. Jeong, H.-J. Jeon, Yu. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Opt. Commun. (2)

Q. Zhang, P. Hu, and C. P. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic goldmushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Q. Zhang, P. Hu, and C. P. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Opt. Express (1)

Photonics and Nanostructures-Fundamentals and Applications (1)

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics and Nanostructures-Fundamentals and Applications 10(1), 166–176 (2012).
[Crossref]

Phys. Rep. (1)

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2-3), 61–137 (1996).
[Crossref]

Phys. Rev. B (1)

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

H. Caglayan, S. H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Plasmonics (1)

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Science (3)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Other (3)

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic, (b) equivalent lumped circuit elements, and (c) equivalent circuit used for designing the single-layer nano-square array FSS filter.
Fig. 2
Fig. 2 Transmittance spectra obtained from (a) the theoretical calculation based on Equivalent circuit theory and (b) numerical calculation based on FDTD algorithm for four samples (A to D). (c) The variance of the resonance wavelength (band-stop center) and transmittance dip (band-stop depth) versus the ratio w/g for theoretical (squared) and FDTD numerical calculations (circled). (d) The corresponding electric field distribution for sample B at resonance wavelength 2097nm is also shown.
Fig. 3
Fig. 3 The three-dimensional (a) topology, (b) equivalent circuit, and (c) schematic of the S-parameters used for designing the third-order band-stop FSS filter.
Fig. 4
Fig. 4 (a) The transmittance spectra from the equivalent circuit theory for single-layer (1-order) filter (dashed dotted line) and triple-layer (3-order) filter (dashed line). The full-wave FDTD simulation results (dotted and solid lined) are also shown for comparison. (b) The electrical field distribution with 2000nm wavelength being chosen for example in the case of 3-order filter.
Fig. 5
Fig. 5 Transmittance spectra of the designed 3-order optical FSS filter as a function of the incident angle for TM (a) and TE (b) waves, red line is the equivalent circuit (EC) result for the case of 0 degree incidence. Here SiO2 are used as the surrounding material and the geometrical parameters are same as those at Table 2.

Tables (2)

Tables Icon

Table 1 Geometrical parameters of the samples.

Tables Icon

Table 2 The element values for the low-pass prototype circuit, and the geometrical parameters of the third-order band-stop FSS filter for the design example.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R= | S 11 | 2 ,
T= | S 21 | 2 = | 2Z/(2Z+η) | 2
S 11 = Z 1 ηη Z 1 η+η , S 21 = S 11 +1, S 22 = S 11 , S 12 = S 21 .
P 1R = | S 11 | 2 P 1F + | S 12 | 2 P 2R , P 2F = | S 21 | 2 P 1F + | S 22 | 2 P 2R , P 2R = | S 33 | 2 P 2F + | S 34 | 2 P 3R , P 3F = | S 43 | 2 P 2F + | S 44 | 2 P 3R , P 3R = | S 55 | 2 P 3F , P 4F = | S 65 | 2 P 3F .
T= P 4F / P 1F = | S 21 | 2 | S 43 | 2 | S 65 | 2 1 | S 11 | 2 | S 33 | 2 | S 33 | 2 | S 55 | 2 + | S 11 | 2 | S 33 | 4 | S 55 | 2 | S 11 | 2 | S 43 | 2 | S 55 | 2 .
Z i Z 0 = G 0 ω c G i ω b n=even, Z i Z 0 = 1 ω c G 0 G i ω b n=odd,

Metrics