Abstract

We demonstrate supercontinuum generation in unspliced as well as in integrated CS2-filled capillary fibers at different pump wavelengths of 1030 nm, 1510 nm, and 1685 nm. A novel method for splicing a liquid-filled capillary fiber to a standard single-mode optical fiber is presented. This method is based on mechanical splicing using a direct-laser written polymer ferrule using a femtosecond two-photon polymerization process. We maintain mostly single-mode operation despite the multi-mode capability of the liquid-filled capillaries. The generated supercontinua exhibit a spectral width of over 1200 nm and 1000 nm for core diameters of 5 μm and 10 μm, respectively. This is an increase of more than 50 percent compared to previously reported values in the literature due to improved dispersion properties of the capillaries.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2

D. Churin, T.N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1358-1364 (2013)

Two-octave supercontinuum generation in a water-filled photonic crystal fiber

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann
Opt. Express 18(6) 6230-6240 (2010)

Mid-IR multipeak and stepwise blueshifted dispersive wave generation in liquid-filled chalcogenide capillary optical fibers

Satya P. Singh, V. Mishra, and Shailendra K. Varshney
J. Opt. Soc. Am. B 33(11) D65-D71 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).
  3. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
    [Crossref] [PubMed]
  4. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
    [Crossref] [PubMed]
  5. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
    [Crossref] [PubMed]
  6. D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
    [Crossref]
  7. L. Xiao, N. V. Wheeler, N. Healy, and A. C. Peacock, “Integrated hollow-core fibers for nonlinear optofluidic applications,” Opt. Express 21, 28751–28757 (2013).
    [Crossref]
  8. G. Fanjoux, A. Sudirman, J. Beugnot, L. Furfaro, W. Margulis, and T. Sylvestre, “Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement,” Opt. Lett. 39, 5407–5410 (2014).
    [Crossref]
  9. S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
    [Crossref]
  10. E. K. Plyler and C. J. Humphreys, “Infrared absorption spectrum of carbon disulfide,” J. Res. Natl. Bur. Stand. 39, 59–65 (1947).
    [Crossref]
  11. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultraefficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
    [Crossref] [PubMed]
  12. D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
    [Crossref] [PubMed]
  13. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
    [Crossref]
  14. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  15. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
  16. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
    [Crossref]
  17. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
    [Crossref]
  18. S. Pricking and H. Giessen, “Generalized retarded response of nonlinear media and its influence on soliton dynamics,” Opt. Express 19, 2895–2903 (2011).
    [Crossref] [PubMed]
  19. R. V. J. Raja, Husakou Anton, J. Hermann, and K. Porsezian, “Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response,” J. Opt. Soc. Am. B 27, 1763–1768 (2010).
    [Crossref]
  20. I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
    [Crossref]
  21. M. J. Weber, “Section 5: Liquids,” in Handbook of Optical Materials (CRC, 2003), pp. 373–393.
  22. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

L. Xiao, N. V. Wheeler, N. Healy, and A. C. Peacock, “Integrated hollow-core fibers for nonlinear optofluidic applications,” Opt. Express 21, 28751–28757 (2013).
[Crossref]

2012 (4)

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultraefficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
[Crossref] [PubMed]

D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
[Crossref] [PubMed]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2006 (2)

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
[Crossref]

1965 (1)

1947 (1)

E. K. Plyler and C. J. Humphreys, “Infrared absorption spectrum of carbon disulfide,” J. Res. Natl. Bur. Stand. 39, 59–65 (1947).
[Crossref]

Anton, Husakou

Bethge, J.

Beugnot, J.

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Buckup, T.

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

Churin, D.

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Colthup, N. W.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).

Correia, R. R. B.

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

Cunha, S. L. S.

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Eggleton, B. J.

Ensley, T. R.

Fanjoux, G.

Fateley, W. G.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).

Ferdinandus, M. R.

Fishman, D. A.

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Furfaro, L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Giessen, H.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

S. Pricking and H. Giessen, “Generalized retarded response of nonlinear media and its influence on soliton dynamics,” Opt. Express 19, 2895–2903 (2011).
[Crossref] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
[Crossref] [PubMed]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Gissibl, T.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref] [PubMed]

Grasselli, J. G.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).

Griebner, U.

Hagan, D. J.

Healy, N.

Hegenbarth, R.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Heisler, I. A.

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

Hermann, J.

Herrmann, J.

Hu, H.

Humphreys, C. J.

E. K. Plyler and C. J. Humphreys, “Infrared absorption spectrum of carbon disulfide,” J. Res. Natl. Bur. Stand. 39, 59–65 (1947).
[Crossref]

Husakou, A.

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Kedenburg, S.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
[Crossref]

Kieu, K.

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultraefficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
[Crossref] [PubMed]

Kuhlmey, B. T.

Lin-Vien, D.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).

Lopez-Cortes, D.

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
[Crossref]

Malitson, I. H.

Margulis, W.

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
[Crossref]

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Mitschke, F.

Nguyen, T. N.

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Noack, F.

Norwood, R. A.

Peacock, A. C.

Peceli, D.

Peyghambarian, N.

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultraefficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
[Crossref] [PubMed]

Plyler, E. K.

E. K. Plyler and C. J. Humphreys, “Infrared absorption spectrum of carbon disulfide,” J. Res. Natl. Bur. Stand. 39, 59–65 (1947).
[Crossref]

Porsezian, K.

Pricking, S.

Raja, R. V. J.

Reed, J. M.

Reichert, M.

Schneebeli, L.

Seidel, M.

Steinle, T.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

Steinmann, A.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Steinmeyer, G.

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Sudirman, A.

Sylvestre, T.

Tarasenko, O.

Teipel, J.

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

van Stryland, E. W.

Vieweg, M.

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref] [PubMed]

Weber, M. J.

M. J. Weber, “Section 5: Liquids,” in Handbook of Optical Materials (CRC, 2003), pp. 373–393.

Webster, S.

Wegener, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Wheeler, N. V.

Wu, D. C.

Xiao, L.

Zhang, R.

Zhao, P.

Adv. Mater. (1)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

J. Chem. Phys. (1)

I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, “Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures,” J. Chem. Phys. 123, 054509 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Quantum. Electron. (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of nonlinear responses in simple liquids,” J. Quantum. Electron. 24, 443–454 (1988).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

E. K. Plyler and C. J. Humphreys, “Infrared absorption spectrum of carbon disulfide,” J. Res. Natl. Bur. Stand. 39, 59–65 (1947).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mat. Express (2)

D. Churin, T. N. Nguyen, K. Kieu, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

Optica (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (3)

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (Wiley, 1991).

M. J. Weber, “Section 5: Liquids,” in Handbook of Optical Materials (CRC, 2003), pp. 373–393.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) V-parameter for purely CS2-filled capillary fibers for core diameters of 2 μm, 5 μm, and 10 μm. The single-mode boundary at V=2.405 is marked with a black dotted line. Only the 2 μm core capillary fulfills this requirement for pump wavelengths higher than 1.8 μm. For the 5 μm and 10 μm core diameters we have at all pump wavelengths a V-parameter that allows multi-mode propagation. (b) Group velocity dispersion (GVD) of the fundamental mode for purely CS2-filled capillary fibers for core diameters of 2 μm, 5 μm, and 10 μm. The zero dispersion boundary is marked with a black dotted line. The zero-dispersion wavelength for the 5 μm core capillary is the smallest (1.8 μm) which is beneficial for supercontinuum generation. We operate at all pump wavelengths in the normal dispersion regime.

Fig. 2
Fig. 2

Mode field distribution for a CS2-filled capillary fiber with a core diameter of 10 μm for a pump wavelength of 1510 nm recorded with a InGaAs camera. Single-mode operation was achieved for (a) unspliced as well as for (b) spliced capillary fibers.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for supercontinuum generation. PBS: polarizing beam splitter; MO: microscope objective; OSA: optical spectrum analyzer.

Fig. 4
Fig. 4

Normalized supercontinuum spectra for unspliced capillary fibers of 5 μm (green), and 10 μm (red) core diameters filled with CS2 and corresponding pump laser spectra (blue) at a center wavelength of (a) 1030 nm, (b) 1510 nm, and (c) 1685 nm. The achieved average output powers were (a) 35 mW, (b) 24 mW, (c) 17 mW and (a) 70 mW, (b) 90 mW, (c) 25 mW for the 5 μm and 10 μm capillary fibers, respectively.

Fig. 5
Fig. 5

Microscope images of the fiber end into which light is coupled in the unspliced capillaries. Side view of (a) 5 μm and (c) 10 μm core diameter capillaries, respectively, and the corresponding top views (b), (d). For the 10 μm capillary the fiber end face is wetted by CS2 and the profile of the CS2-air interface is slightly bent which do not diminish the coupling efficiencies. For the 5 μm capillary the end face is not wetted and CS2 is only located in the core.

Fig. 6
Fig. 6

Schematic of the fabrication process for an integrated liquid-filled device. (a) Design of the ferrule on a standard single-mode fiber consisting of a base plate (light gray) and a ring (dark gray). (b) Top view of the fabricated ferrule by direct laser writing. (c) Assembly of the single-mode fiber with ferrule (left) and the CS2-filled capillary (right) via a camera. (d) Mechanically spliced fibers aligned by the fabricated ferrule on the single-mode fiber. (e) Strengthening of the splice with UV-adhesive. (f) Liquid-filled tank on the opposite site of the splice. The capillary is put into the tank before the splice takes place. (g) Layout of the whole highly nonlinear integrated liquid-filled device.

Fig. 7
Fig. 7

Normalized supercontinuum spectra for integrated capillary fibers of 5 μm (green), and 10 μm (red) core diameters filled with CS2 and corresponding pump laser spectra (blue) at a center wavelength of (a) 1030 nm, (b) 1510 nm, and (c) 1685 nm. The achieved average output powers were (a) 14 mW, (b) 25 mW, (c) 14 mW and (a) 75 mW, (b) 43 mW, (c) 20 mW for the 5 μm and 10 μm capillary fibers, respectively.

Fig. 8
Fig. 8

(a) Schematic of the ferrule design for a mechanical splice between two heat sensitive solid-core fibers (e.g. ZBLAN-chalcogenide). The design is similar to the integrated fiber capillaries composed of a base plate with some air holes to create a step-index profile and an outer ring. (b) Top view and (c) side view of the fabricated ferrule by direct laser writing onto a ZBLAN-fiber. The inner diameter of the outer ring has been adjusted to a chalcogenide fiber with a cladding diameter of 175 μm.

Metrics