Abstract

Averaging and shifting the refractive index profiles of quasiperiodic structure reveals the formation of several localized modes in the reflectivity spectrum and were used to generate different spectral barcodes. By associating the depth and wavelength of the observed resonant modes to the thickness and position of blackbars, respectively, the possibility to generate multiple codes has been shown. An experimental verification was carried out with multilayered dielectric porous silicon structures with reflectivity spectra revealing unique photonic fingerprints.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the optical properties of composite multilayered photonic structures: effect of superposition

Anupam Mukherjee, A. David Ariza-Flores, R. Fabiola Balderas-Valadez, and Vivechana Agarwal
Opt. Express 21(14) 17324-17339 (2013)

Protease detection using a porous silicon based Bloch surface wave optical biosensor

Hong Qiao, Bin Guan, J. Justin Gooding, and Peter J Reece
Opt. Express 18(14) 15174-15182 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
    [Crossref] [PubMed]
  2. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17(7), 5446–5456 (2009).
    [Crossref] [PubMed]
  3. I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
    [Crossref]
  4. V. Agarwal and M. E. Mora-Ramos, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D: Appl. Phys. 40(10), 3203–3211 (2007).
    [Crossref]
  5. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
    [Crossref] [PubMed]
  6. A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
    [Crossref]
  7. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [Crossref] [PubMed]
  8. C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
    [Crossref] [PubMed]
  9. G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
    [Crossref] [PubMed]
  10. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13(10), 3754–3764 (2005).
    [Crossref] [PubMed]
  11. V. Lehmann, “Biosensors: barcoded molecules,” Nat. Mater. 1, 12–13 (2002).
    [Crossref]
  12. C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
    [Crossref] [PubMed]
  13. F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
    [Crossref]
  14. S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
    [Crossref]
  15. M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
    [Crossref]
  16. A. Mukherjee, A. D. Ariza-Flores, R. F. Balderas-Valadez, and V. Agarwal, “Controlling the optical properties of composite multilayered photonic structures: effect of superposition,” Opt. Express 21(14), 17324–17339 (2013).
    [Crossref] [PubMed]
  17. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
    [Crossref]
  18. T. Jalkanen, J. Salonen, V. Torres-Costa, K. Fukami, T. Sakka, and Y. H. Ogata, “Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes,” Opt. Express 19(14), 13291–13305 (2011).
    [Crossref] [PubMed]
  19. S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
    [Crossref]
  20. S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Status Solidi-R 1(2), R71–R73 (2007).
    [Crossref]
  21. S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
    [Crossref] [PubMed]
  22. S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
    [Crossref] [PubMed]
  23. D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
    [Crossref]

2014 (1)

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

2013 (2)

2012 (1)

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

2011 (2)

T. Jalkanen, J. Salonen, V. Torres-Costa, K. Fukami, T. Sakka, and Y. H. Ogata, “Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes,” Opt. Express 19(14), 13291–13305 (2011).
[Crossref] [PubMed]

A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
[Crossref]

2010 (1)

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

2009 (4)

T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17(7), 5446–5456 (2009).
[Crossref] [PubMed]

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
[Crossref]

2008 (2)

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

2007 (3)

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

V. Agarwal and M. E. Mora-Ramos, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D: Appl. Phys. 40(10), 3203–3211 (2007).
[Crossref]

S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Status Solidi-R 1(2), R71–R73 (2007).
[Crossref]

2005 (1)

2004 (1)

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

2003 (1)

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

2002 (2)

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

V. Lehmann, “Biosensors: barcoded molecules,” Nat. Mater. 1, 12–13 (2002).
[Crossref]

2001 (1)

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

1997 (1)

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Agarwal, V.

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

A. Mukherjee, A. D. Ariza-Flores, R. F. Balderas-Valadez, and V. Agarwal, “Controlling the optical properties of composite multilayered photonic structures: effect of superposition,” Opt. Express 21(14), 17324–17339 (2013).
[Crossref] [PubMed]

A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
[Crossref]

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

V. Agarwal and M. E. Mora-Ramos, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D: Appl. Phys. 40(10), 3203–3211 (2007).
[Crossref]

Ahn, K. H.

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

Ariza-Flores, A. D.

A. Mukherjee, A. D. Ariza-Flores, R. F. Balderas-Valadez, and V. Agarwal, “Controlling the optical properties of composite multilayered photonic structures: effect of superposition,” Opt. Express 21(14), 17324–17339 (2013).
[Crossref] [PubMed]

A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
[Crossref]

Ariza-Flores, D.

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

Aulombard, R.

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

Balderas-Valadez, R. F.

Björkqvist, M.

Böcking, T.

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Bonetti, G.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

Cai, L.

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

Chan, S.

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Chen, M. Y.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
[Crossref]

Chiappini, C.

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

Ciampi, S.

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Dronov, R.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

Encinas, A.

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

Euler, W. B.

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

Fakhoury, J. R.

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

Fauchet, P. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13(10), 3754–3764 (2005).
[Crossref] [PubMed]

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Fenollosa, R.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

Ferrari, M.

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

Fukami, K.

Gaburro, Z.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

Gaggero-Sager, L. M.

A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
[Crossref]

Garín, M.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

Gergely, C.

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Ghulinyan, M.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

Gooding, J. J.

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Harper, J. B.

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Hodges, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

Hu, D.

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

Huang, J.

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

Jalkanen, T.

Jane, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

Kilian, K. A.

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Kumar, Y.

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

Lehmann, V.

V. Lehmann, “Biosensors: barcoded molecules,” Nat. Mater. 1, 12–13 (2002).
[Crossref]

Lehto, V. P.

Levitsky, I. A.

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

Li, S.

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

Li, Y.

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Liu, X.

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

Mäkilä, E.

Martínez-Duart, J. M.

Meade, S. O.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
[Crossref]

S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Status Solidi-R 1(2), R71–R73 (2007).
[Crossref]

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

Meseguer, F.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

Miller, B. L.

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Miskelly, G. M.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

Mora-Ramos, M. E.

V. Agarwal and M. E. Mora-Ramos, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D: Appl. Phys. 40(10), 3203–3211 (2007).
[Crossref]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Mukherjee, A.

Ogata, Y. H.

Oton, C. J.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

Pacholski, C.

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Palestino, G.

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

Pavesi, L.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

Pérez, E.

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

Pérez-Huerta, J. S.

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

Ramiro-Manzano, F.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

Rose, A.

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

Rothberg, L. J.

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Saarinen, J. J.

Sailor, M. J.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
[Crossref]

S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Status Solidi-R 1(2), R71–R73 (2007).
[Crossref]

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Sakka, T.

Salonen, J.

Sipe, J. E.

Tokranova, N.

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

Torres-Costa, V.

Voelcker, N. H.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

Weiss, S. M.

Xifré-Pérez, E.

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

Yoon, M. S.

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

Adv. Funct. Mater. (1)

C. Chiappini, X. Liu, J. R. Fakhoury, and M. Ferrari, “Biodegradable porous silicon barcode nanowires with defined geometry,” Adv. Funct. Mater. 20(14), 2231–2239 (2010).
[Crossref] [PubMed]

Adv. Mat. (1)

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat. 16(20), 1811–1814 (2004).
[Crossref]

Anal. Chem. (1)

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81(7), 2618–2625 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

I. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[Crossref]

J. Appl. Phys. (1)

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[Crossref]

J. Phys. D: Appl. Phys. (2)

V. Agarwal and M. E. Mora-Ramos, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D: Appl. Phys. 40(10), 3203–3211 (2007).
[Crossref]

A. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “Effect of interface gradient on the optical properties of multilayered porous silicon photonic structures,” J. Phys. D: Appl. Phys. 44, 155102 (2011).
[Crossref]

Langmuir (2)

G. Palestino, V. Agarwal, R. Aulombard, E. Pérez, and C. Gergely, “Biosensing and protein fluorescence enhancement by functionalized porous silicon devices,” Langmuir 24(23), 13765–13771 (2008).
[Crossref] [PubMed]

S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper, and J. J. Gooding, “Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters,” Langmuir 24(11), 5888–5892 (2008).
[Crossref] [PubMed]

Mat. Sci. Eng. C (1)

S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mat. Sci. Eng. C 15(1–2), 277–282 (2001).
[Crossref]

Nanoscale Res. Lett. (2)

F. Ramiro-Manzano, R. Fenollosa, E. Xifré-Pérez, M. Garín, and F. Meseguer, “Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices,” Nanoscale Res. Lett. 7, 497 (2002).
[Crossref]

S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett. 7, 79 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

V. Lehmann, “Biosensors: barcoded molecules,” Nat. Mater. 1, 12–13 (2002).
[Crossref]

Opt. Express (4)

Phys. Status Solidi C (1)

M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Status Solidi C 6(7), 1610–1614 (2009).
[Crossref]

Phys. Status Solidi-R (1)

S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Status Solidi-R 1(2), R71–R73 (2007).
[Crossref]

Science (1)

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Sensors (1)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Sol. Energy Mat. Sol. Cells (1)

D. Ariza-Flores, J. S. Pérez-Huerta, Y. Kumar, A. Encinas, and V. Agarwal, “Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers,” Sol. Energy Mat. Sol. Cells 123, 144–149 (2014).
[Crossref]

Trends Biotechnol. (1)

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Refractive index profiles of MC mirrors designed for (a) λ1 = 0.84 and (c) λ2 = 1.0 μm, (e) averaged resultant structure (obtained combining MCs of Figs. 1(a) and 1(c)), and (g) averaged and shifted resultant structure (obtained combining MCs of Figs. 1(a) and 1(c)). The corresponding theoretical modelling results of reflectivity spectra are shown in (b), (d), (f), and (h). The high/low refractive index nH/nL = 2.0/1.15.
Fig. 2
Fig. 2 Refractive index profiles of MC mirrors designed for λ = 0.74 μm with the cavity optical thickness of (a) λ/2, (c) 6.5λ, and (e) 13λ. The corresponding theoretical modelling results of reflectivity spectra are shown in (b), (d), and (f). The refractive indices are taken as nH = 2.0 and nl = 1.15.
Fig. 3
Fig. 3 Schematics of the refractive index profile (upper part of each panel), simulated (gray line) and experimental (black line) reflectance spectra (central part of each panel), and the corresponding barcode image (lower part of each panel) of the experimental spectra, for averaged and shifted structures with (a) 10, (b) 30, (c) 40 and (d) 60 % of shift.
Fig. 4
Fig. 4 FESEM cross section of multi-peak response structures obtained by averaging two multi-MCs designed at λ1 = 0.74 μm and λ2 = 0.76 μm with (a) 10%, (b) 30%, and (c) 40% shift. The dark and clear zones correspond to the high (low) and low (high) porosity (refractive index) layers, respectively. Left hand side of each image shows the corresponding schematic of the refractive index profile along the depth.
Fig. 5
Fig. 5 Contour plot of the reflectivity spectrum, as a function of wavelength and the percentage of relative shift for two composite microcavities under averaging. The color scale indicates the percentage of reflectivity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = | r | 2 ,
r = Γ 0 m 11 + Γ 0 Γ s m 12 m 21 Γ s m 22 Γ 0 m 11 + Γ 0 Γ s m 12 + m 21 + Γ s m 22
Γ j = ε 0 μ 0 n j
m α β = M 1 M 2 M N M s
M l = ( cos ( k 0 h l ) i sin ( k 0 h l ) / Γ l i Γ l sin ( k 0 h l ) cos ( k 0 h l ) )
n a v e ( x ) = 1 p i = 1 p n i ( x ) ,

Metrics