Abstract

We develop and characterize a UV ablation technique that can be used to pattern soft materials such as polymers and nonlinear molecules self-assembled over silica microstructures. Using this method, we fabricate a spatially periodic coating of nonlinear film over a thin silica fiber taper for second harmonic generation (SHG). Experimentally, we find that the second harmonic signal produced by the taper with periodic nonlinear coating is 15 times stronger than the same taper with uniform nonlinear coating, which suggests that quasi-phase-matching is at least partially achieved in the patterned nonlinear silica taper. The same technique can also be used to spatially pattern other types of functional nanomaterials over silica microstructures with curved surfaces, as demonstrated by deposition of gold nanoparticles in patterned structures.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Chalongrat Daengngam, Ishac Kandas, Islam Ashry, Jeong-Ah Lee, Anbo Wang, James R. Heflin, and Yong Xu, "Fabrication and characterization of periodically patterned silica fiber structures for enhanced second-order nonlinearity: publisher’s note," Opt. Express 25, 10473-10473 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-9-10473

20 April 2017: A correction was made to the author listing.


OSA Recommended Articles
Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers

Chalongrat Daengngam, Matthias Hofmann, Zhiwen Liu, Anbo Wang, James R. Heflin, and Yong Xu
Opt. Express 19(11) 10326-10335 (2011)

Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals

Stefan J. Holmgren, Valdas Pasiskevicius, Shunhua Wang, and Fredrik Laurell
Opt. Lett. 28(17) 1555-1557 (2003)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  2. B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
    [Crossref]
  3. M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
    [Crossref]
  4. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  5. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
    [Crossref] [PubMed]
  6. T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
    [Crossref]
  7. C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).
  8. A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
    [Crossref]
  9. S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
    [Crossref]
  10. J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
    [Crossref] [PubMed]
  11. Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
    [Crossref]
  12. Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
    [Crossref] [PubMed]
  13. C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express 19(11), 10326–10335 (2011).
    [Crossref] [PubMed]
  14. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
    [Crossref]
  15. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
    [Crossref] [PubMed]
  16. J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
    [Crossref]
  17. Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
    [Crossref]
  18. S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
    [Crossref] [PubMed]
  19. H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
    [Crossref]
  20. A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
    [Crossref] [PubMed]
  21. C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
    [Crossref]
  22. M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
    [Crossref] [PubMed]
  23. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Opt. 37(6), 1068–1073 (1998).
    [Crossref] [PubMed]
  24. O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
    [Crossref]
  25. T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
    [Crossref]
  26. H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
    [Crossref]
  27. B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
    [Crossref]
  28. J. C. Chon and P. B. Comita, “Laser ablation of nonlinear-optical polymers to define low- loss optical channel waveguides,” Opt. Lett. 19(22), 1840–1842 (1994).
    [Crossref] [PubMed]
  29. N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
    [Crossref] [PubMed]
  30. M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
    [Crossref]
  31. I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, J. R. Heflin, L. Yang, and Y. Xu, “High quality factor silica microspheres functionalized with self-assembled nanomaterials,” Opt. Express 21(18), 20601–20610 (2013).
    [Crossref] [PubMed]
  32. T.-C. Poon and T. Kim, Engineering Optics with Matlab (Word Scientific Publishing, 2008).
  33. I. Ashry, I. Kandas, X. Wei, J. A. Calderone, B. Zhang, H. D. Robinson, J. R. Heflin, W. L. Santos, and Y. Xu, “Impact of lithography on the fluorescence dynamics of self-assembled fluorophores,” Opt. Express 22(11), 12935–12943 (2014).
    [Crossref] [PubMed]
  34. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  35. A. Camara, O. Tarasenko, and W. Margulis, “Study of thermally poled fibers with a two-dimensional model,” Opt. Express 22(15), 17700–17715 (2014).
    [Crossref] [PubMed]
  36. S. M. Tseng and C. L. Chen, “Side-polished fibers,” Appl. Opt. 31(18), 3438–3447 (1992).
    [Crossref] [PubMed]
  37. G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
    [Crossref]
  38. W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
    [Crossref]
  39. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
    [Crossref]

2014 (2)

2013 (2)

2012 (1)

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
[Crossref] [PubMed]

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

2009 (2)

2008 (1)

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
[Crossref]

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

2006 (3)

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[Crossref]

2005 (1)

C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).

2003 (2)

M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
[Crossref]

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

2002 (1)

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

2001 (2)

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

2000 (1)

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

1998 (1)

1997 (3)

H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
[Crossref]

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
[Crossref]

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

1996 (3)

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
[Crossref]

1994 (1)

1992 (2)

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

S. M. Tseng and C. L. Chen, “Side-polished fibers,” Appl. Opt. 31(18), 3438–3447 (1992).
[Crossref] [PubMed]

1991 (1)

1987 (1)

H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
[Crossref]

1965 (1)

Aktsipetrov, O. A.

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

Alt, W.

Antonyuk, B. P.

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

Ashry, I.

Aubry, C.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

Balakirev, M. K.

M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
[Crossref]

Behrens, S. H.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

Bekesi, J.

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

Bityurin, N.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

Borhani, M.

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

Brands, C.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Brochers, B.

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

Brueck, S. R. J.

Calderone, J. A.

Camara, A.

Canagasabey, A.

Cao, Y. C.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Chen, C. L.

Chiron, D.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

Chon, B. H.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Chon, J. C.

Chong, T. C.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

Chu, H. Y.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Comita, P. B.

Corbari, C.

Daengngam, C.

Dan, C.

Davis, R. M.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Dianov, E. M.

Didenko, N. V.

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Fujiwara, T.

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
[Crossref]

Gaskins, K. J.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Gibson, H. W.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Gladyshev, A. V.

Gorodetsky, M. L.

Grier, D. G.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Guillemet, S.

Guzy, M. T.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Hammond, P. T.

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

Han, J. H.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Han, M.

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

Hattori, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

Heflin, J. R.

I. Ashry, I. Kandas, X. Wei, J. A. Calderone, B. Zhang, H. D. Robinson, J. R. Heflin, W. L. Santos, and Y. Xu, “Impact of lithography on the fluorescence dynamics of self-assembled fluorophores,” Opt. Express 22(11), 12935–12943 (2014).
[Crossref] [PubMed]

I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, J. R. Heflin, L. Yang, and Y. Xu, “High quality factor silica microspheres functionalized with self-assembled nanomaterials,” Opt. Express 21(18), 20601–20610 (2013).
[Crossref] [PubMed]

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express 19(11), 10326–10335 (2011).
[Crossref] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
[Crossref]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Her, E. K.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Hernandez, Y.

Hiraoka, H.

H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
[Crossref]

Hirota, K.

Ho, H. L.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Hofmann, M.

Hong, M. H.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

Horinouchi, S.

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

Hutchinson, J. W.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Ibsen, M.

Ihlemann, J.

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

Ikushima, A. J.

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
[Crossref]

Ilchenko, V. S.

Imai, H.

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

Irsen, S.

Ishii, K.

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Jao, C.-Y.

Jeoung, S. C.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Jin, W.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Ju, J.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Kaino, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

Kandas, I.

Karapetyan, K.

Kazansky, P. G.

Kazasky, P. G.

C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).

Kim, D.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Kim, H. S.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Kim, Y. H.

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

Kosolapov, A.

Lee, J.-I.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Lee, K.-R.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Liegeois, F.

Liu, Z.

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express 19(11), 10326–10335 (2011).
[Crossref] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
[Crossref]

Luk’yanchuk, B. S.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

Malitson, I. H.

Margulis, W.

Martinero, E. E.

H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
[Crossref]

Masuhara, H.

H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
[Crossref]

Meschede, D.

Mito, K.

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Moliton, J. P.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

Moon, M.-W.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Morris, J. R.

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

Mukherjee, N.

Myers, R. A.

Nakanishi, M.

Nakayama, H.

H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
[Crossref]

Neyman, P. J.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Nikogosyan, N.

C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).

Novikova, N. N.

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

Ober, C. K.

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

Oh, K. H.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Okada, A.

O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
[Crossref]

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Okamoto, N.

M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Opt. 37(6), 1068–1073 (1998).
[Crossref] [PubMed]

H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
[Crossref]

Onodera, S.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

Ozdemir, S. K.

Paik, M. Y.

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

Park, J.

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

Park, M.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Peng, B.

Pritzkau, D.

Qi, L. F.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Rae Kim, H.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Rastogi, A.

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

Robinson, H. D.

Santos, W. L.

Sasaki, K.

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Savchenkov, A. A.

Shibata, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

Simon, P.

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

Slattery, S. A.

C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).

Smirnov, V. A.

M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
[Crossref]

Stoianov, S. V.

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

Sugihara, O.

M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Opt. 37(6), 1068–1073 (1998).
[Crossref] [PubMed]

H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
[Crossref]

Takahashi, M.

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
[Crossref]

Tanaka, M.

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

Tarasenko, O.

Terfort, A.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Tien, J.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Trigaud, T.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

Tseng, S. M.

Tsuchimori, M.

O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
[Crossref]

Van Cott, K. E.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

Vaziri, A.

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Vostrikova, L. I.

M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
[Crossref]

Wang, A.

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express 19(11), 10326–10335 (2011).
[Crossref] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
[Crossref]

Wang, Z.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[Crossref]

Watanabe, O.

O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
[Crossref]

Wei, X.

Whitesides, G. M.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Wiedemann, U.

Wu, G.

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[Crossref]

Xu, Y.

Yang, L.

Yashkov, M. V.

Yoo, P. J.

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

Zhang, B.

Zhang, G. J.

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

Zhang, Y.

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4(5), 2348–2357 (2012).
[Crossref] [PubMed]

ACS Nano (1)

A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. H. Kim, J. Park, P. J. Yoo, and P. T. Hammond, “Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers,” Adv. Mater. 19(24), 4426–4430 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

H. Nakayama, O. Sugihara, and N. Okamoto, “Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer,” Appl. Phys. Lett. 71(14), 1924–1926 (1997).
[Crossref]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007).
[Crossref]

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997).
[Crossref]

C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106 (2005).

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996).
[Crossref]

Chem. Phys. Lett. (1)

H. Masuhara, H. Hiraoka, and E. E. Martinero, “Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole),” Chem. Phys. Lett. 135(1-2), 103–108 (1987).
[Crossref]

Chem. Rev. (1)

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103(2), 519–552 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (2)

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87(7), 3240–3244 (2000).
[Crossref]

B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107(6), 063106 (2010).
[Crossref]

J. Chem. Phys. (1)

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

J. Mater. Chem. (1)

O. Watanabe, M. Tsuchimori, and A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of non-linear optical polyurethanes and a urethane-urea copolymer,” J. Mater. Chem. 6(9), 1487–1492 (1996).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003).
[Crossref]

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

Langmuir (2)

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006).
[Crossref] [PubMed]

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Nanotechnology (1)

M.-W. Moon, J. H. Han, A. Vaziri, E. K. Her, K. H. Oh, K.-R. Lee, and J. W. Hutchinson, “Nanoscale ripples on polymers created by a focused ion beam,” Nanotechnology 20(11), 115301 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Opt. Lasers Eng. (1)

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. Rae Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[Crossref]

Opt. Lett. (4)

Phys. Lett. A (1)

B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001).
[Crossref]

Phys. Rev. Lett. (1)

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008).
[Crossref] [PubMed]

Synth. Met. (1)

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[Crossref]

Other (1)

T.-C. Poon and T. Kim, Engineering Optics with Matlab (Word Scientific Publishing, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Optical fiber taper with periodically patterned nonlinear surface layers for SHG.
Fig. 2
Fig. 2 (a) The depth of the crater caused by single-pulse ablation versus pulse fluence. The inset shows a representative crater profile obtained using a surface profilometer. (b) The crater depth as a function of the number of pulses used in laser ablation, with pulse fluence fixed at F = 45 mJ/cm2.
Fig. 3
Fig. 3 (a) A phase-contrast optical microscope image of ablated PAH/PB film on a planar glass substrate. (b) A schematic of the experimental setup for measuring SHG from the patterned PAH/PB film, where the sample is scanned across a focused pump beam. (c) SHG power versus sample position.
Fig. 4
Fig. 4 (a) A microscope image of the whole taper structure, including both the waist and the transition regions. (b) The radial profile of the fiber taper extracted from the microscope image in (a).
Fig. 5
Fig. 5 (a) A Schematic diagram of an ablation mask over a nonlinear taper. The mean gap between the mask and the taper waist is ~62.5 μm. (b) Simulated UV beam fluence (normalized with respect to incident fluence) on the nonlinear polymer coating. Case 1: the mask is in direct contact with the polymer coating (dashed blue line); Case 2: a 62.5 μm gap exists between the mask and the polymer coating (red line). The three dashed green horizontal lines indicate the ablation threshold (FT) for three different incident fluences Fin given in the text. Their corresponding ablated polymer coating patterns are individually labelled as (i), (ii), and (iii).
Fig. 6
Fig. 6 (a) Images of a fiber taper with periodic coatings of 150-bilayer PAH/PB film. (b) Confocal fluorescence microscope images of a periodic pattern of the 20-bilayer (PAH-TR)/PB film. Both imaging techniques confirm that well-defined periodic patterns can be produced at the front and the back of the taper.
Fig. 7
Fig. 7 Loss spectra of a fiber taper with different coating structure: (black line) bare taper, (red line) the taper after coating with 10-bilayer PAH/PB film, and (blue line) after patterning by laser ablation.
Fig. 8
Fig. 8 (a) Schematic diagram of the experimental setup to measure SHG power generated by a patterned nonlinear fiber taper. (b) The measured SHG intensity at different pump wavelength for (square ■) a taper with uniform coating of 10-bilayer PAH/PB, and (triangles ▲) the same sample with ablation patterning.
Fig. 9
Fig. 9 (a) Numerical result for the coherence length, Lcoh, of SHG in a nonlinear fiber taper with pump wavelength between 1100 and 1300 nm, and for different taper radius. (b) Schematic illustration of the modulation of the effective χ ( 2 ) along the direction for light propagation, and the configuration for SHG analyzed in section 5. (c) The SHG power versus pump wavelength for different taper radius, obtained using Eq. (6). The results are normalized such that the highest SHG power is set to 1.
Fig. 10
Fig. 10 (a) Theoretical estimate of SHG conversion efficiency from a taper with uniform radius of a = 1 µm, nonlinear film thickness δ = 30 nm, grating period Λ = 24 µm, and excited by pump power Pω = 400 W. L denotes total taper length. (b) The profile of taper radius near its waist. This result is a magnified view of the taper radius profile shown in Fig. 4(b).
Fig. 11
Fig. 11 (a) SEM images showing a periodic pattern of Au NPs near a taper waist, produced by ablation patterning with F = 4FT. (b) and (c) show spatial patterns of Au NPs on similar tapers, where laser ablation of the polymer coating is performed with laser fluence F < 4FT and F > 4FT, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l = 1 α ln ( F F T ) ,
L coh = π Δ β ,
d E 2 ω d z = i ω π ε 0 ν g n 3 | E ω i n | 2 χ e f f ( 2 ) ( z ) e i Δ β z ,
χ e f f ( 2 ) ( z ) = χ e f f , 0 ( 2 ) m G m e i k m z ,
E 2 ω o u t = i ω π ε 0 ν g n 3 | E ω i n | 2 L χ e f f , 0 ( 2 ) [ m G m e i Δ β m L / 2 sin ( Δ β m L / 2 ) ( Δ β m L / 2 ) ] ,
P 2 ω { 2 δ 2 | χ r r r ( 2 ) | 2 ε 0 3 c 3 π 2 n 5 } P ω 2 ω 2 L 2 a 4 | m G m e i Δ β m L / 2 sin ( Δ β m L / 2 ) ( Δ β m L / 2 ) | 2 .

Metrics