Abstract

Multiplexing of optical modes in waveguides is demonstrated using coupled vertical gratings. The device utilizes sinusoidally corrugated waveguides of different widths with a period designed to multiplex information at 1.55µm. The design, fabrication and characterization of devices is performed. Multiplexing of modes is demonstrated in optical structures which support 3 and 5 quasi-TE modes. The design utilizes counter-propagating modes in periodic structures, thus enabling the device to combine its mode division multiplexing capabilities with wavelength division multiplexing functionalities to further augment the multiplexing capacity of the device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-mode division multiplexing in a silicon-on-insulator ring resonator

Bryce A. Dorin and Winnie N. Ye
Opt. Express 22(4) 4547-4558 (2014)

On-chip data exchange for mode division multiplexed signals

Mengyuan Ye, Yu Yu, Chunlei Sun, and Xinliang Zhang
Opt. Express 24(1) 528-535 (2016)

Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon

D. T. H. Tan, A. Grieco, and Y. Fainman
Opt. Express 22(9) 10408-10415 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
    [Crossref]
  2. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
    [Crossref]
  3. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
    [Crossref] [PubMed]
  4. D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
    [Crossref] [PubMed]
  5. F. Xia, M. O'Boyle, L. Sekaric, and Y. Vlasov, ” Ultra-Compact Wavelength Division Multiplexing Devices Using Silicon Photonic Wires for On-Chip Interconnects,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWG2.
    [Crossref]
  6. C. P. Chen, J. Driscoll, B. Souhan, R. Grote, X. Zhu, R. M. Osgood, and K. Bergman, “Experimental Demonstration of Spatial Scaling for High-Throughput Transmission Through A Si Mode-Division-Multiplexing Waveguide,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM2A.3.
  7. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  8. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
    [Crossref]
  9. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  10. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
    [Crossref]
  11. X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007).
    [Crossref] [PubMed]
  12. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  13. B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
    [Crossref] [PubMed]
  14. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
    [Crossref]
  15. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
    [Crossref] [PubMed]
  16. G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
    [PubMed]
  17. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
    [Crossref] [PubMed]
  18. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref] [PubMed]
  19. D. T. H. Tan, “Optical pulse compression on a silicon chip – Effect of group velocity dispersion and free carriers,” Appl. Phys. Lett. 101(21), 211112 (2012).
    [Crossref]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  21. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]

2014 (4)

D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
[Crossref]

B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (1)

D. T. H. Tan, “Optical pulse compression on a silicon chip – Effect of group velocity dispersion and free carriers,” Appl. Phys. Lett. 101(21), 211112 (2012).
[Crossref]

2011 (1)

2010 (1)

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

2009 (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

2008 (1)

2007 (1)

1998 (1)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[Crossref]

1992 (1)

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

1988 (1)

R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
[Crossref]

Bergano, N. S.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cappuzzo, M.

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, G. F. R.

Chrostowski, L.

Cunningham, J. E.

Dai, D.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
[Crossref]

Donnelly, C.

Earnshaw, M.

Eisenstein, G.

R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
[Crossref]

Evangelides, S. G.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

Fainman, Y.

Fard, S. T.

Ferrari, C.

Flueckiger, J.

Fontaine, N. K.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gordon, J. P.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

Greenberg, M.

Grieco, A.

Guan, B.

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
[Crossref]

Hu, T.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ikeda, K.

Jaeger, N. A. F.

Jiang, G.

Jiang, J.

Jiang, X.

Kawanishi, S.

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[Crossref]

Keller, B.

Klemens, F.

Korotky, S. K.

R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
[Crossref]

Krishnamoorthy, A. V.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lin, C.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Mizrahi, A.

Mollenauer, L. F.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

Nezhad, M. P.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Qin, C.

Qiu, H.

Raj, K.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Saperstein, R. E.

Scott, R. P.

Shao, H.

Shi, W.

Shubin, I.

Slutsky, B.

Su, T.

Sun, P. C.

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Tan, D. T. H.

Tucker, R. S.

R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
[Crossref]

Wang, T.

Wang, X.

Wang, Y.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007).
[Crossref] [PubMed]

Yan, L.-S.

Yang, J.

Yao, X. S.

Yoo, S. J.

Yu, H.

Yu, P.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Yun, H.

Zamek, S.

Zhang, B.

Zheng, X.

Appl. Phys. Lett. (2)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

D. T. H. Tan, “Optical pulse compression on a silicon chip – Effect of group velocity dispersion and free carriers,” Appl. Phys. Lett. 101(21), 211112 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[Crossref]

J. Lightwave Technol. (2)

R. S. Tucker, G. Eisenstein, and S. K. Korotky, “Optical time-division multiplexing for very high bit-rate transmission,” J. Lightwave Technol. 6(11), 1737–1749 (1988).
[Crossref]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–35 (1992).
[Crossref]

Laser and Photonics Reviews. (1)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser and Photonics Reviews. 8(2), L18–L22 (2014).
[Crossref]

Nat. Commun. (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Opt. Express (7)

B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
[PubMed]

X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (3)

F. Xia, M. O'Boyle, L. Sekaric, and Y. Vlasov, ” Ultra-Compact Wavelength Division Multiplexing Devices Using Silicon Photonic Wires for On-Chip Interconnects,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWG2.
[Crossref]

C. P. Chen, J. Driscoll, B. Souhan, R. Grote, X. Zhu, R. M. Osgood, and K. Bergman, “Experimental Demonstration of Spatial Scaling for High-Throughput Transmission Through A Si Mode-Division-Multiplexing Waveguide,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM2A.3.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Device schematic for the mode division multiplexer. The MDM consists of two coupled gratings with widths, W1 and W2 respectively and modulation depths of ∆W1 and ∆W2 respectively. The peak to peak separation between W1 and W2 is denoted by the gap width, G. (b) SEM micrograph over two periods of a typical device showing a close up of the gap. (c) Schematic of how the MDM device can be combined with wavelength division multiplexing capabilities.

Fig. 2
Fig. 2

(a) Effective index vs. waveguide width for modes m = 0 to m = 5. It is seen that three modes exist for W2 = 1250nm and five modes exist for W2 = 1850nm. (b) Sum of propagation constants vs. wavelength for the various modes.

Fig. 3
Fig. 3

Mode profiles for (a) – (c) W2 = 1250nm for m = 0 – 2 and (d) – (f) W2 = 1850nm.for m = 2 – 4.

Fig. 4
Fig. 4

MDM transmission spectrum for (a) zeroth, (b) first and (c) second order mode. W1 = 450nm and W2 = 1250nm, G = 80nm for all three plots. (d) MDM transmission spectrum for W1 = 450nm and W2 = 1250nm, G = 100nm showing the smaller channel bandwidth compared to G = 80nm.

Fig. 5
Fig. 5

Sum of propagation constants vs. wavelength corresponding to the (a) zeroth, (b) first and (c) second order modes for W2 = 1250nm. In each plot, the horizontal blue line shows the value of 2π/Λ corresponding to the value of Λ used. The intersection point of (β1 + β2) and 2π/Λ represent the wavelength at which the Bragg condition (Eq. (1) is satisfied.

Fig. 6
Fig. 6

(a) Transmission (blue) and drop port (red) spectra showing the multiplexing of the second and third order modes. (b) Transmission (blue) and drop port (red) spectra showing multiplexing of the third and fourth order modes.

Fig. 7
Fig. 7

Sum of propagation constants vs. wavelength corresponding to the (a) second and third order modes and (b) fourth order modes for W2 = 1850nm. In each plot, the horizontal blue line shows the value of 2π/Λ corresponding to the value of Λ used. The intersection point of (β1 + β2) and 2π/Λ represent the wavelength at which the Bragg condition (Eq. (1) is satisfied.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ c =Λ.( n eff1 + n eff2,m )
β 1 + β 2 = 2π Λ

Metrics