Abstract

During the interaction of a laser pulse with the surface of a solid object, the object always gains momentum. The delivered force impulse is manifested as propulsion. Initially, the motion of the object is composed of elastic waves that carry and redistribute the acquired momentum as they propagate and reflect within the solid. Even though only ablation- and light-pressure-induced mechanical waves are involved in propulsion, they are always accompanied by the ubiquitous thermoelastic waves. This paper describes 1D elastodynamics of pulsed optical manipulation and presents two diametrical experimental observations of elastic waves generated in the confined ablation and in the radiation pressure regime.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical measurements of the laser-induced ultrasonic waves on moving objects

Tomaž Požar, Peter Gregorčič, and Janez Možina
Opt. Express 17(25) 22906-22911 (2009)

Perspective on light-induced transport of particles: from optical forces to phoretic motion

Pavel Zemánek, Giorgio Volpe, Alexandr Jonáš, and Oto Brzobohatý
Adv. Opt. Photon. 11(3) 577-678 (2019)

Effect of oblique force source induced by laser ablation on ultrasonic generation

Yuning Guo, Dexing Yang, Ying Chang, and Wei Gao
Opt. Express 22(1) 166-176 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Možina and R. Hrovatin, “Optodynamics - A synthesis of optoacoustics and laser processing,” Prog. Nat. Sci. 6, S709–S714 (1996).
  2. J. Možina and J. Diaci, “Recent advances in optodynamics,” Appl. Phys. B.-Lasers O. 105(3), 557–563 (2011).
  3. J. Možina and J. Diaci, “Optodynamics: dynamic aspects of laser beam-surface interaction,” Phys. Scr. 2012(T149), 014077 (2012).
    [Crossref]
  4. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (A. Hilger, 1990).
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  6. R. M. White, “Generation of Elastic Waves by Transient Surface Heating,” J. Appl. Phys. 34(12), 3559–3567 (1963).
    [Crossref]
  7. J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
    [Crossref]
  8. S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
    [Crossref]
  9. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
    [Crossref]
  10. D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications (Springer-Verlag, 2000), pp. 201–255.
  11. C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
    [Crossref]
  12. Y. K. Bae, “Prospective of Photon Propulsion for Interstellar Flight,” Phys. Procedia. 38, 253–279 (2012).
    [Crossref]
  13. N. Jain, “Laser Ultrasonics - The Next Big Nondestructive Inspection Technology?” Frost & Sullivan Market Insight (16. May 2011).
  14. M. Mansuripur, “Momentum exchange effect,” Nat. Photonics 7(10), 765–766 (2013).
    [Crossref]
  15. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
    [Crossref] [PubMed]
  16. J. Možina and J. Diaci, “On-line Optodynamic Monitoring of Laser Materials Processing,” in Advanced Knowledge Application in Practice, I. Fuerstner, ed. (InTech, 2010), pp. 37–60.
  17. T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
    [Crossref]
  18. T. Požar and J. Možina, “Homodyne Quadrature Laser Interferometer Applied for the Studies of Optodynamic Wave Propagation in a Rod,” Stroj. Vestn.-J. Mech. E. 55(10), 575–580 (2009).
  19. T. Požar, P. Gregorčič, and J. Možina, “Optical measurements of the laser-inducedultrasonic waves on moving objects,” Opt. Express 17(25), 22906–22911 (2009).
    [Crossref] [PubMed]
  20. T. Požar and J. Možina, “Optodynamic description of a linear momentum transfer from a laser induced ultrasonic wave to a rod,” Appl. Phys. Adv. Mater. 91(2), 315–318 (2008).
  21. D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
    [Crossref]
  22. J. P. Monchalin and J. D. Aussel, “Ultrasonic velocity and attenuation determination by laser-ultrasonics,” J. Nondest. Eval. 9(4), 211–221 (1990).
    [Crossref]
  23. T. Požar and J. Možina, “Measurement of Elastic Waves Induced by the Reflection of Light,” Phys. Rev. Lett. 111(18), 185501 (2013).
    [Crossref] [PubMed]
  24. J. C. Bushnell and D. J. McCloskey, “Thermoelastic Stress Production in Solids,” J. Appl. Phys. 39(12), 5541–5546 (1968).
    [Crossref]
  25. N. Arnold, “Dry laser cleaning of particles by nanosecond pulses: Theory,” in Laser Cleaning, B. Luk'yanchuk, ed. (World Scientific, 2002), pp. 51–102.
  26. A. N. Pirri, “Theory for Momentum-Transfer to a Surface with a High-Power Laser,” Phys. Fluids 16(9), 1435–1440 (1973).
    [Crossref]
  27. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
    [Crossref]
  28. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  29. C. R. Phipps and M. M. Michaelis, “LISP: Laser impulse space propulsion,” Laser Part. Beams 12(1), 23–54 (1994).
    [Crossref]
  30. T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
    [Crossref] [PubMed]
  31. A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
    [Crossref]
  32. M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).
  33. K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
    [Crossref]
  34. T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
    [Crossref]
  35. G. C. McLaskey and S. D. Glaser, “Acoustic Emission Sensor Calibration for Absolute Source Measurements,” J. Nondestruct. Eval. 31(2), 157–168 (2012).
    [Crossref]
  36. M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
    [Crossref]
  37. T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).
  38. S. A. Akhmanov and V. É. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp. 35(3), 153–191 (1992).
    [Crossref]
  39. Optical Properties of Selected Elements,” in CRC Handbook of Chemistry and Physics, 89th ed., David R. L., ed., (CRC Press/Taylor and Francis, 2009).
  40. G. C. McLaskey and S. D. Glaser, “Hertzian impact: Experimental study of the force pulse and resulting stress waves,” J. Acoust. Soc. Am. 128(3), 1087–1096 (2010).
    [Crossref] [PubMed]
  41. T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).
  42. N. N. Hsu, “Dynamic Green’s Functions of an Infinite Plate - A Computer Program,” NBSIR 85–3234 (National Bureau of Standards, 1985), pp. 1–65.
  43. P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. (Berlin) 311(11), 433–458 (1901).
    [Crossref]
  44. E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. Ser. I 13(5), 307–320 (1901).
    [Crossref]
  45. J. H. Poynting, “On small longitudinal material waves accompanying light-waves,” P. Roy. Soc. Lond. A. Mat. 85(580), 474–476 (1911).
    [Crossref]
  46. L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
    [Crossref]
  47. K. Kubota, “Optically-Excited Elastic Waves in Solids,” Solid State Commun. 9(23), 2045–2047 (1971).
    [Crossref]
  48. M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
    [Crossref]
  49. T. Požar, “Oblique reflection of a laser pulse from a perfect elastic mirror,” Opt. Lett. 39(1), 48–51 (2014).
    [Crossref] [PubMed]
  50. L. F. Bresse and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal force source,” J. Acoust. Soc. Am. 86(2), 810–817 (1989).
    [Crossref]
  51. M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]

2014 (3)

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

T. Požar, “Oblique reflection of a laser pulse from a perfect elastic mirror,” Opt. Lett. 39(1), 48–51 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

2013 (5)

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).

T. Požar and J. Možina, “Measurement of Elastic Waves Induced by the Reflection of Light,” Phys. Rev. Lett. 111(18), 185501 (2013).
[Crossref] [PubMed]

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref] [PubMed]

M. Mansuripur, “Momentum exchange effect,” Nat. Photonics 7(10), 765–766 (2013).
[Crossref]

2012 (3)

Y. K. Bae, “Prospective of Photon Propulsion for Interstellar Flight,” Phys. Procedia. 38, 253–279 (2012).
[Crossref]

J. Možina and J. Diaci, “Optodynamics: dynamic aspects of laser beam-surface interaction,” Phys. Scr. 2012(T149), 014077 (2012).
[Crossref]

G. C. McLaskey and S. D. Glaser, “Acoustic Emission Sensor Calibration for Absolute Source Measurements,” J. Nondestruct. Eval. 31(2), 157–168 (2012).
[Crossref]

2011 (2)

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
[Crossref]

J. Možina and J. Diaci, “Recent advances in optodynamics,” Appl. Phys. B.-Lasers O. 105(3), 557–563 (2011).

2010 (2)

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

G. C. McLaskey and S. D. Glaser, “Hertzian impact: Experimental study of the force pulse and resulting stress waves,” J. Acoust. Soc. Am. 128(3), 1087–1096 (2010).
[Crossref] [PubMed]

2009 (2)

T. Požar and J. Možina, “Homodyne Quadrature Laser Interferometer Applied for the Studies of Optodynamic Wave Propagation in a Rod,” Stroj. Vestn.-J. Mech. E. 55(10), 575–580 (2009).

T. Požar, P. Gregorčič, and J. Možina, “Optical measurements of the laser-inducedultrasonic waves on moving objects,” Opt. Express 17(25), 22906–22911 (2009).
[Crossref] [PubMed]

2008 (5)

T. Požar and J. Možina, “Optodynamic description of a linear momentum transfer from a laser induced ultrasonic wave to a rod,” Appl. Phys. Adv. Mater. 91(2), 315–318 (2008).

T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
[Crossref]

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).

2006 (1)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2002 (1)

M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).

1996 (1)

J. Možina and R. Hrovatin, “Optodynamics - A synthesis of optoacoustics and laser processing,” Prog. Nat. Sci. 6, S709–S714 (1996).

1994 (1)

C. R. Phipps and M. M. Michaelis, “LISP: Laser impulse space propulsion,” Laser Part. Beams 12(1), 23–54 (1994).
[Crossref]

1993 (1)

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

1992 (1)

S. A. Akhmanov and V. É. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp. 35(3), 153–191 (1992).
[Crossref]

1990 (2)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

J. P. Monchalin and J. D. Aussel, “Ultrasonic velocity and attenuation determination by laser-ultrasonics,” J. Nondest. Eval. 9(4), 211–221 (1990).
[Crossref]

1989 (2)

S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
[Crossref]

L. F. Bresse and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal force source,” J. Acoust. Soc. Am. 86(2), 810–817 (1989).
[Crossref]

1988 (2)

J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

1986 (1)

D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
[Crossref]

1985 (1)

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

1973 (1)

A. N. Pirri, “Theory for Momentum-Transfer to a Surface with a High-Power Laser,” Phys. Fluids 16(9), 1435–1440 (1973).
[Crossref]

1971 (1)

K. Kubota, “Optically-Excited Elastic Waves in Solids,” Solid State Commun. 9(23), 2045–2047 (1971).
[Crossref]

1968 (1)

J. C. Bushnell and D. J. McCloskey, “Thermoelastic Stress Production in Solids,” J. Appl. Phys. 39(12), 5541–5546 (1968).
[Crossref]

1963 (1)

R. M. White, “Generation of Elastic Waves by Transient Surface Heating,” J. Appl. Phys. 34(12), 3559–3567 (1963).
[Crossref]

1911 (1)

J. H. Poynting, “On small longitudinal material waves accompanying light-waves,” P. Roy. Soc. Lond. A. Mat. 85(580), 474–476 (1911).
[Crossref]

1901 (2)

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. (Berlin) 311(11), 433–458 (1901).
[Crossref]

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. Ser. I 13(5), 307–320 (1901).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov and V. É. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp. 35(3), 153–191 (1992).
[Crossref]

Anderson, G. K.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Anju, K.

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

Arnold, W.

S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Aussel, J. D.

J. P. Monchalin and J. D. Aussel, “Ultrasonic velocity and attenuation determination by laser-ultrasonics,” J. Nondest. Eval. 9(4), 211–221 (1990).
[Crossref]

J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
[Crossref]

Baboux, J. C.

J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
[Crossref]

Bae, Y. K.

Y. K. Bae, “Prospective of Photon Propulsion for Interstellar Flight,” Phys. Procedia. 38, 253–279 (2012).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Berthe, L.

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

Birkan, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Bohn, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Bresse, L. F.

L. F. Bresse and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal force source,” J. Acoust. Soc. Am. 86(2), 810–817 (1989).
[Crossref]

Bushnell, J. C.

J. C. Bushnell and D. J. McCloskey, “Thermoelastic Stress Production in Solids,” J. Appl. Phys. 39(12), 5541–5546 (1968).
[Crossref]

Cai, L.

M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).

Chinaglia, D. L.

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

Cielo, P.

D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
[Crossref]

Corlis, X. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Davies, S. J.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Diaci, J.

J. Možina and J. Diaci, “Optodynamics: dynamic aspects of laser beam-surface interaction,” Phys. Scr. 2012(T149), 014077 (2012).
[Crossref]

J. Možina and J. Diaci, “Recent advances in optodynamics,” Appl. Phys. B.-Lasers O. 105(3), 557–563 (2011).

Eckel, H. A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Edwards, C.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

Fabbro, R.

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fassbender, S.

S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Freschi, A. A.

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

Glaser, S. D.

G. C. McLaskey and S. D. Glaser, “Acoustic Emission Sensor Calibration for Absolute Source Measurements,” J. Nondestruct. Eval. 31(2), 157–168 (2012).
[Crossref]

G. C. McLaskey and S. D. Glaser, “Hertzian impact: Experimental study of the force pulse and resulting stress waves,” J. Acoust. Soc. Am. 128(3), 1087–1096 (2010).
[Crossref] [PubMed]

Gregorcic, P.

T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “Optical measurements of the laser-inducedultrasonic waves on moving objects,” Opt. Express 17(25), 22906–22911 (2009).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gusev, V. É.

S. A. Akhmanov and V. É. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp. 35(3), 153–191 (1992).
[Crossref]

Harrison, R. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Hattori, M.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Haynes, L. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Hening, A.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Hessel, R.

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

Hoffmann, B.

S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
[Crossref]

Horisawa, H.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Hrovatin, R.

J. Možina and R. Hrovatin, “Optodynamics - A synthesis of optoacoustics and laser processing,” Prog. Nat. Sci. 6, S709–S714 (1996).

Hull, G. F.

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. Ser. I 13(5), 307–320 (1901).
[Crossref]

Hutchins, D. A.

L. F. Bresse and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal force source,” J. Acoust. Soc. Am. 86(2), 810–817 (1989).
[Crossref]

D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
[Crossref]

King, T. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Kobayashi, M.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Kubota, K.

K. Kubota, “Optically-Excited Elastic Waves in Solids,” Solid State Commun. 9(23), 2045–2047 (1971).
[Crossref]

Lebedev, P. N.

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. (Berlin) 311(11), 433–458 (1901).
[Crossref]

Lebrun, A.

J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
[Crossref]

Lippert, T.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Mansuripur, M.

M. Mansuripur, “Momentum exchange effect,” Nat. Photonics 7(10), 765–766 (2013).
[Crossref]

Marquard, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

McCloskey, D. J.

J. C. Bushnell and D. J. McCloskey, “Thermoelastic Stress Production in Solids,” J. Appl. Phys. 39(12), 5541–5546 (1968).
[Crossref]

McLaskey, G. C.

G. C. McLaskey and S. D. Glaser, “Acoustic Emission Sensor Calibration for Absolute Source Measurements,” J. Nondestruct. Eval. 31(2), 157–168 (2012).
[Crossref]

G. C. McLaskey and S. D. Glaser, “Hertzian impact: Experimental study of the force pulse and resulting stress waves,” J. Acoust. Soc. Am. 128(3), 1087–1096 (2010).
[Crossref] [PubMed]

Michaelis, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Michaelis, M. M.

C. R. Phipps and M. M. Michaelis, “LISP: Laser impulse space propulsion,” Laser Part. Beams 12(1), 23–54 (1994).
[Crossref]

Mihailescu, I. N.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Miyachi, T.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Monchalin, J. P.

J. P. Monchalin and J. D. Aussel, “Ultrasonic velocity and attenuation determination by laser-ultrasonics,” J. Nondest. Eval. 9(4), 211–221 (1990).
[Crossref]

Mori, K.

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

Možina, J.

T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref] [PubMed]

T. Požar and J. Možina, “Measurement of Elastic Waves Induced by the Reflection of Light,” Phys. Rev. Lett. 111(18), 185501 (2013).
[Crossref] [PubMed]

J. Možina and J. Diaci, “Optodynamics: dynamic aspects of laser beam-surface interaction,” Phys. Scr. 2012(T149), 014077 (2012).
[Crossref]

J. Možina and J. Diaci, “Recent advances in optodynamics,” Appl. Phys. B.-Lasers O. 105(3), 557–563 (2011).

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “Optical measurements of the laser-inducedultrasonic waves on moving objects,” Opt. Express 17(25), 22906–22911 (2009).
[Crossref] [PubMed]

T. Požar and J. Možina, “Homodyne Quadrature Laser Interferometer Applied for the Studies of Optodynamic Wave Propagation in a Rod,” Stroj. Vestn.-J. Mech. E. 55(10), 575–580 (2009).

T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
[Crossref]

T. Požar and J. Možina, “Optodynamic description of a linear momentum transfer from a laser induced ultrasonic wave to a rod,” Appl. Phys. Adv. Mater. 91(2), 315–318 (2008).

T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).

J. Možina and R. Hrovatin, “Optodynamics - A synthesis of optoacoustics and laser processing,” Prog. Nat. Sci. 6, S709–S714 (1996).

Muller, M.

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

Nadeau, F.

D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
[Crossref]

Nanu, L.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. Ser. I 13(5), 307–320 (1901).
[Crossref]

Nooshi, N.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Okada, N.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Osborne, W. Z.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Palmer, S. B.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

Petkovšek, R.

T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
[Crossref]

T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).

Phipps, C.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Phipps, C. R.

C. R. Phipps and M. M. Michaelis, “LISP: Laser impulse space propulsion,” Laser Part. Beams 12(1), 23–54 (1994).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Pirri, A. N.

A. N. Pirri, “Theory for Momentum-Transfer to a Surface with a High-Power Laser,” Phys. Fluids 16(9), 1435–1440 (1973).
[Crossref]

Poynting, J. H.

J. H. Poynting, “On small longitudinal material waves accompanying light-waves,” P. Roy. Soc. Lond. A. Mat. 85(580), 474–476 (1911).
[Crossref]

Požar, T.

T. Požar, “Oblique reflection of a laser pulse from a perfect elastic mirror,” Opt. Lett. 39(1), 48–51 (2014).
[Crossref] [PubMed]

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref] [PubMed]

T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).

T. Požar and J. Možina, “Measurement of Elastic Waves Induced by the Reflection of Light,” Phys. Rev. Lett. 111(18), 185501 (2013).
[Crossref] [PubMed]

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “Optical measurements of the laser-inducedultrasonic waves on moving objects,” Opt. Express 17(25), 22906–22911 (2009).
[Crossref] [PubMed]

T. Požar and J. Možina, “Homodyne Quadrature Laser Interferometer Applied for the Studies of Optodynamic Wave Propagation in a Rod,” Stroj. Vestn.-J. Mech. E. 55(10), 575–580 (2009).

T. Požar and J. Možina, “Optodynamic description of a linear momentum transfer from a laser induced ultrasonic wave to a rod,” Appl. Phys. Adv. Mater. 91(2), 315–318 (2008).

T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
[Crossref]

T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).

Raetchi, V.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Rezunkov, Y.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Sasoh, A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

Sawada, K.

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

Schall, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Scharring, S.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Schliesser, A.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Schneider, M.

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

Sinko, J.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Spicochi, K. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Stamatescu, L.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Steele, H. S.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Sugita, S.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Takechi, S.

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

Taylor, G. S.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

Turner, T. P.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Vahala, K. J.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Voicu, L.

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

White, R. M.

R. M. White, “Generation of Elastic Waves by Transient Surface Heating,” J. Appl. Phys. 34(12), 3559–3567 (1963).
[Crossref]

York, G. W.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Yoshida, M.

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

Zaretsky, E.

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

Zhang, Y. K.

M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).

Zhou, M.

M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).

Am. J. Phys. (1)

A. A. Freschi, R. Hessel, M. Yoshida, and D. L. Chinaglia, “Compression waves and kinetic energy losses in collisions between balls and rods of different lengths,” Am. J. Phys. 82(4), 280–286 (2014).
[Crossref]

Ann. Phys. (Berlin) (1)

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. (Berlin) 311(11), 433–458 (1901).
[Crossref]

Appl. Phys. Adv. Mater. (4)

T. Požar and J. Možina, “Optodynamic description of a linear momentum transfer from a laser induced ultrasonic wave to a rod,” Appl. Phys. Adv. Mater. 91(2), 315–318 (2008).

T. Požar, R. Petkovšek, and J. Možina, “Formation of linear momentum in a rod during a laser pulse-matter interaction,” Appl. Phys. Adv. Mater. 92(4), 891–895 (2008).

T. Požar, P. Gregorčič, and J. Možina, “Interferometric determination of the high-intensity laser-pulse-material interaction site,” Appl. Phys. Adv. Mater. 112(1), 165–171 (2013).

M. Zhou, Y. K. Zhang, and L. Cai, “Adhesion measurement of thin films by a modified laser spallation technique: theoretical analysis and experimental investigation,” Appl. Phys. Adv. Mater. 74(4), 475–480 (2002).

Appl. Phys. B-Lasers O. (1)

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B-Lasers O. 105(3), 575–582 (2011).
[Crossref]

Appl. Phys. B.-Lasers O. (1)

J. Možina and J. Diaci, “Recent advances in optodynamics,” Appl. Phys. B.-Lasers O. 105(3), 557–563 (2011).

Appl. Phys. Lett. (1)

T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101 (2008).
[Crossref]

Can. J. Phys. (1)

D. A. Hutchins, F. Nadeau, and P. Cielo, “A Pulsed Photoacoustic Investigation of Ultrasonic Mode Conversion,” Can. J. Phys. 64(9), 1334–1340 (1986).
[Crossref]

Earth Planets Space (1)

M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth Planets Space 65(3), 167–173 (2013).
[Crossref]

J. Acoust. Soc. Am. (2)

L. F. Bresse and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal force source,” J. Acoust. Soc. Am. 86(2), 810–817 (1989).
[Crossref]

G. C. McLaskey and S. D. Glaser, “Hertzian impact: Experimental study of the force pulse and resulting stress waves,” J. Acoust. Soc. Am. 128(3), 1087–1096 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (4)

R. M. White, “Generation of Elastic Waves by Transient Surface Heating,” J. Appl. Phys. 34(12), 3559–3567 (1963).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical Study of Laser-Produced Plasma in Confined Geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

J. C. Bushnell and D. J. McCloskey, “Thermoelastic Stress Production in Solids,” J. Appl. Phys. 39(12), 5541–5546 (1968).
[Crossref]

J. Nondest. Eval. (1)

J. P. Monchalin and J. D. Aussel, “Ultrasonic velocity and attenuation determination by laser-ultrasonics,” J. Nondest. Eval. 9(4), 211–221 (1990).
[Crossref]

J. Nondestruct. Eval. (1)

G. C. McLaskey and S. D. Glaser, “Acoustic Emission Sensor Calibration for Absolute Source Measurements,” J. Nondestruct. Eval. 31(2), 157–168 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

M. Schneider, L. Berthe, R. Fabbro, and M. Muller, “Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime,” J. Phys. D Appl. Phys. 41(15), 155502 (2008).
[Crossref]

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-Generated Ultrasound - Its Properties, Mechanisms and Multifarious Applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993).
[Crossref]

J. Propul. Power (2)

K. Anju, K. Sawada, A. Sasoh, K. Mori, and E. Zaretsky, “Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion,” J. Propul. Power 24(2), 322–329 (2008).
[Crossref]

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[Crossref]

Laser Part. Beams (1)

C. R. Phipps and M. M. Michaelis, “LISP: Laser impulse space propulsion,” Laser Part. Beams 12(1), 23–54 (1994).
[Crossref]

Mater. Sci. Eng. A (1)

S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient Generation of Acoustic Pressure Waves by Short Laser-Pulses,” Mater. Sci. Eng. A 122(1), 37–41 (1989).
[Crossref]

Nat. Photonics (1)

M. Mansuripur, “Momentum exchange effect,” Nat. Photonics 7(10), 765–766 (2013).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

P. Roy. Soc. Lond. A. Mat. (1)

J. H. Poynting, “On small longitudinal material waves accompanying light-waves,” P. Roy. Soc. Lond. A. Mat. 85(580), 474–476 (1911).
[Crossref]

Phys. Fluids (1)

A. N. Pirri, “Theory for Momentum-Transfer to a Surface with a High-Power Laser,” Phys. Fluids 16(9), 1435–1440 (1973).
[Crossref]

Phys. Procedia. (1)

Y. K. Bae, “Prospective of Photon Propulsion for Interstellar Flight,” Phys. Procedia. 38, 253–279 (2012).
[Crossref]

Phys. Rev. Lett. (2)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

T. Požar and J. Možina, “Measurement of Elastic Waves Induced by the Reflection of Light,” Phys. Rev. Lett. 111(18), 185501 (2013).
[Crossref] [PubMed]

Phys. Rev. Ser. I (1)

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. Ser. I 13(5), 307–320 (1901).
[Crossref]

Phys. Scr. (1)

J. Možina and J. Diaci, “Optodynamics: dynamic aspects of laser beam-surface interaction,” Phys. Scr. 2012(T149), 014077 (2012).
[Crossref]

Phys. Status Solidi A (1)

L. Voicu, L. Stamatescu, A. Hening, V. Raetchi, I. N. Mihailescu, and L. Nanu, “On the Signals Generated by Lead Zirconium Titanate (PZT) Ceramics when Irradiated with Microsecond Pulsed TEA-CO2 Laser Pulses,” Phys. Status Solidi A 91(2), K103–K106 (1985).
[Crossref]

Prog. Nat. Sci. (1)

J. Možina and R. Hrovatin, “Optodynamics - A synthesis of optoacoustics and laser processing,” Prog. Nat. Sci. 6, S709–S714 (1996).

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquard, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Solid State Commun. (1)

K. Kubota, “Optically-Excited Elastic Waves in Solids,” Solid State Commun. 9(23), 2045–2047 (1971).
[Crossref]

Sov. Phys. Usp. (1)

S. A. Akhmanov and V. É. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp. 35(3), 153–191 (1992).
[Crossref]

Stroj. Vestn.-J. Mech. E. (1)

T. Požar and J. Možina, “Homodyne Quadrature Laser Interferometer Applied for the Studies of Optodynamic Wave Propagation in a Rod,” Stroj. Vestn.-J. Mech. E. 55(10), 575–580 (2009).

Ultrasonics (1)

J. D. Aussel, A. Lebrun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26(5), 245–255 (1988).
[Crossref]

Other (7)

D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications (Springer-Verlag, 2000), pp. 201–255.

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (A. Hilger, 1990).

J. Možina and J. Diaci, “On-line Optodynamic Monitoring of Laser Materials Processing,” in Advanced Knowledge Application in Practice, I. Fuerstner, ed. (InTech, 2010), pp. 37–60.

N. Jain, “Laser Ultrasonics - The Next Big Nondestructive Inspection Technology?” Frost & Sullivan Market Insight (16. May 2011).

Optical Properties of Selected Elements,” in CRC Handbook of Chemistry and Physics, 89th ed., David R. L., ed., (CRC Press/Taylor and Francis, 2009).

N. N. Hsu, “Dynamic Green’s Functions of an Infinite Plate - A Computer Program,” NBSIR 85–3234 (National Bureau of Standards, 1985), pp. 1–65.

N. Arnold, “Dry laser cleaning of particles by nanosecond pulses: Theory,” in Laser Cleaning, B. Luk'yanchuk, ed. (World Scientific, 2002), pp. 51–102.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Conceptual scheme of the elastic waves related to pulsed laser manipulation. Drawings on the left side on the figure recapitulate different light-matter interaction mechanisms. If the gray-code within the wave is paler that the undisturbed material, the wave is a rarefaction, and if it is darker, the wave is a compression. The graphs in the middle of the figure show the corresponding normal displacement of a rear surface of an 1D layer that can be detected with a suitable displacement-measuring sensor. The dashed line represents the displacement of the center of mass.
Fig. 2
Fig. 2 Theoretical out-of-plane displacement of the rear surface of an infinite layer as a function of time. Dashed lines: the motion of the layer’s center of mass u*(t), Eq. (9). Solid lines: discrete staircase-like displacement u(x = L,t), Eq. (6), caused by an elastic wave reverberating within the free-free layer. Black lines: FWHM = 10 ns or t0 = 4.2 ns. Gray lines: FWHM = 0,5 μs.
Fig. 3
Fig. 3 Detection of AIWs. (a) Experimental setup. (b),(c) Measured rear-end displacement of the rod in the first 600 μs (b) and 120 μs (c). (d) Theoretical displacement corresponding to inset (c).
Fig. 4
Fig. 4 Suppression sequence of TEWs. (a) Experimental setup. (b) Measured rear-surface out-of-plane displacement of the mirror in the first 4.41 μs. TEW peak is detected at 0,5 μs. LIW components’ arrival times: P at 1.07 μs, S at 1.70 μs, 3P at 3.21 μs and 2PS at 3.84 μs.
Fig. 5
Fig. 5 Detection of LIWs. (a) Experimental setup. (b) Theoretical displacement of the rear side of the mirror. Dashed black line: discrete staircase-like motion. Solid black line: the simplified expected waveform considering the clamping of the mirror and the transfer function of the PZT sensor. (c) Measured rear-surface displacement of the mirror in the first 7 μs for qi = 0.56 J/cm2. (d) Comparison between the measured LIW amplitudes (dots) and the theory [solid line, Eq. (2)]

Tables (1)

Tables Icon

Table 1 Experimental parameters and measured/calculated values

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δp= m 0 c P =ρ u 0 A c P =ZA u 0 ,
u 0 = 1+R Zc q i ,
C m = Δp E i = P(t) I i (t) = 1+R c = Z q i u 0 .
C m = 1R L B v e
P(t)= 1R L B v e I i (t) .
u(x,t)=Γ(x,t) I i (t)= 0 t Γ(x,ξ) I i (tξ)dξ .
Γ(x,t)= n=0 [ G(x, c P t2nL)+G(2Lx, c P t2nL) ] ,
I i (t)= q i t t 0 2 e t/ t 0
u*(t)= C m Z t L 0 t [ 0 t I i ( t )d t ]d t .

Metrics