Abstract

We present a source of near-infrared photon pairs based on the process of spontaneous parametric downconversion (SPDC), for which the joint signal-idler quantum state is designed to be factorable in the frequency-time and in the transverse position-momentum degrees of freedom. Our technique is based on the use of a broadband pump and vector group velocity matching between the pump, signal, and idler waves. We show experimentally that a source based on this technique can be configured for the generation of: i) pure heralded single photons, and ii) polarization-entangled photon pairs which are free from spectral correlations, in both cases without resorting to spectral filtering. While critical for many applications in optical quantum information processing, such a source has not previously been demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

Efficient and pure femtosecond-pulse-length source of polarization-entangled photons

Morgan M. Weston, Helen M. Chrzanowski, Sabine Wollmann, Allen Boston, Joseph Ho, Lynden K. Shalm, Varun B. Verma, Michael S. Allman, Sae Woo Nam, Raj B. Patel, Sergei Slussarenko, and Geoff J. Pryde
Opt. Express 24(10) 10869-10879 (2016)

Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4

Fabian Steinlechner, Marta Gilaberte, Marc Jofre, Thomas Scheidl, Juan P. Torres, Valerio Pruneri, and Rupert Ursin
J. Opt. Soc. Am. B 31(9) 2068-2076 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
    [Crossref] [PubMed]
  2. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
    [Crossref]
  3. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
    [Crossref] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  5. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
    [Crossref]
  6. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  7. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  8. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,” vol. 1 (1984), pp. 175–179.
  9. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref] [PubMed]
  10. C. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
    [Crossref] [PubMed]
  11. K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
    [Crossref] [PubMed]
  12. B. L. Glebov, J. Fan, and A. Migdall, “Deterministic generation of single photons via multiplexing repetitive parametric downconversions,” Appl. Phys. Lett. 103, 031115 (2013).
    [Crossref]
  13. P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
    [Crossref] [PubMed]
  14. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
    [Crossref]
  15. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  16. W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
    [Crossref]
  17. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).
  18. A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
    [Crossref]
  19. A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [Crossref]
  20. K. Zielnicki, A. B. U’Ren, and P. Kwiat, “Joint spectral measurement,” (2014). Unpublished.
  21. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  22. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences) (Cambridge University, 2000).
  23. J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
    [Crossref]
  24. L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
    [Crossref]
  25. D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
    [Crossref]
  26. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
    [Crossref]
  27. R. Rangarajan, “Photonic sources and detectors for quantum information protocols: A trilogy in eight parts,” Ph.D. thesis, University of Illinois at Urbana-Champaign, United States – Illinois (2010).
  28. W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
    [Crossref] [PubMed]
  29. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873 (2009).
    [Crossref] [PubMed]
  30. A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
    [Crossref]
  31. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
    [Crossref]
  32. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express 17, 18920–18933 (2009).
    [Crossref]
  33. J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Mod. Phys. 38, 447–452 (1966).
    [Crossref]
  34. O. Guhne and G. Toth, “Entanglement detection,” Phys. Rep. 474, 1–75 (2009).
    [Crossref]
  35. J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA 46, 570 (1960).
    [Crossref] [PubMed]
  36. A. Migdall, “Polarization directions of noncollinear phase-matched optical parametric downconversion output,” J. Opt. Soc. Am. B 14, 1093 (1997).
    [Crossref]
  37. R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
    [Crossref]
  38. T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
    [Crossref] [PubMed]
  39. T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
    [Crossref] [PubMed]
  40. W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).
  41. Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
    [Crossref] [PubMed]
  42. J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
    [Crossref]
  43. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522 (2013).
    [Crossref] [PubMed]
  44. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975 (2013).
    [Crossref] [PubMed]
  45. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref] [PubMed]
  46. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440 (2013).
    [Crossref] [PubMed]
  47. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
    [Crossref]

2014 (1)

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

2013 (5)

2012 (1)

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

2011 (4)

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
[Crossref]

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

2010 (3)

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

2009 (4)

2007 (1)

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

2006 (2)

2005 (1)

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

2003 (1)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).

2002 (1)

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

2001 (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1999 (3)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

1997 (2)

A. Migdall, “Polarization directions of noncollinear phase-matched optical parametric downconversion output,” J. Opt. Soc. Am. B 14, 1093 (1997).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

1995 (2)

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

1994 (2)

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

1993 (2)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1986 (1)

C. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

1966 (1)

J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Mod. Phys. 38, 447–452 (1966).
[Crossref]

1960 (1)

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA 46, 570 (1960).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Ansari, V.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Avenhaus, M.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Ball, J. L.

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Banaszek, K.

W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).

Barbieri, M.

Barenco, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Bell, J. S.

J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Mod. Phys. 38, 447–452 (1966).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,” vol. 1 (1984), pp. 175–179.

Bennink, R.

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Booth, M. J.

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Branning, D.

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,” vol. 1 (1984), pp. 175–179.

Brecht, B.

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Brunner, N.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Cassemiro, K. N.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Cavalcanti, D.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Chen, J.

Chiao, R.

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Chiao, R. Y.

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

Christ, A.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences) (Cambridge University, 2000).

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Dauler, E. A.

Deutsch, D.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Dirmeier, T.

Eberhard, P.

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

Eberly, J. H.

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
[Crossref]

Eckstein, A.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873 (2009).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Ekert, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Englund, D.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

Erdmann, R.

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

Evans, P.

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Fan, J.

B. L. Glebov, J. Fan, and A. Migdall, “Deterministic generation of single photons via multiplexing repetitive parametric downconversions,” Appl. Phys. Lett. 103, 031115 (2013).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Glebov, B. L.

B. L. Glebov, J. Fan, and A. Migdall, “Deterministic generation of single photons via multiplexing repetitive parametric downconversions,” Appl. Phys. Lett. 103, 031115 (2013).
[Crossref]

Goggin, M.

Grice, W.

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
[Crossref]

Guhne, O.

O. Guhne and G. Toth, “Entanglement detection,” Phys. Rep. 474, 1–75 (2009).
[Crossref]

Harder, G.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Herzog, T.

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

Hong, C.

C. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Humble, T.

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Humphreys, P. C.

Jin, X.-M.

Jozsa, R.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kerman, A. J.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kolenderski, P.

Kolthammer, W. S.

Kwiat, P.

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express 17, 18920–18933 (2009).
[Crossref]

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

K. Zielnicki, A. B. U’Ren, and P. Kwiat, “Joint spectral measurement,” (2014). Unpublished.

Kwiat, P. G.

R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
[Crossref]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref] [PubMed]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laiho, K.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Langford, N. K.

Levine, Z. H.

Ling, A.

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

C. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

Marquardt, C.

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

McCusker, K. T.

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref] [PubMed]

Metcalf, B. J.

Migdall, A.

B. L. Glebov, J. Fan, and A. Migdall, “Deterministic generation of single photons via multiplexing repetitive parametric downconversions,” Appl. Phys. Lett. 103, 031115 (2013).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

A. Migdall, “Polarization directions of noncollinear phase-matched optical parametric downconversion output,” J. Opt. Soc. Am. B 14, 1093 (1997).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Molnar, R. J.

Moore, M.

Mosley, P. J.

Mower, J.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

Nasr, M. B.

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences) (Cambridge University, 2000).

O’Brien, J. L.

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Osorio, C. I.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Petroff, M.

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Pironio, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Radzewicz, C.

Rangarajan, R.

R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
[Crossref]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express 17, 18920–18933 (2009).
[Crossref]

R. Rangarajan, “Photonic sources and detectors for quantum information protocols: A trilogy in eight parts,” Ph.D. thesis, University of Illinois at Urbana-Champaign, United States – Illinois (2010).

Rarity, J.

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

Rosenberg, D.

Saleh, B. E.

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Salter, P. S.

Scarani, V.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Schaake, J.

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Schwinger, J.

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA 46, 570 (1960).
[Crossref] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Silberhorn, C.

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975 (2013).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873 (2009).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Spring, J. B.

Steinberg, A.

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Steinberg, A. M.

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Teich, M. C.

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Thomas-Peter, N.

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Torres, J. P.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

Toth, G.

O. Guhne and G. Toth, “Entanglement detection,” Phys. Rep. 474, 1–75 (2009).
[Crossref]

U’Ren, A. B.

R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
[Crossref]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).

W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
[Crossref]

K. Zielnicki, A. B. U’Ren, and P. Kwiat, “Joint spectral measurement,” (2014). Unpublished.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

Vicent, L. E.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Walmsley, I.

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

Walmsley, I. A.

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522 (2013).
[Crossref] [PubMed]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).

W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
[Crossref]

Wasilewski, W.

Wasylczyk, P.

Wehner, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

Zhang, L.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

Zielnicki, K.

K. Zielnicki, A. B. U’Ren, and P. Kwiat, “Joint spectral measurement,” (2014). Unpublished.

Appl. Phys. Lett. (1)

B. L. Glebov, J. Fan, and A. Migdall, “Deterministic generation of single photons via multiplexing repetitive parametric downconversions,” Appl. Phys. Lett. 103, 031115 (2013).
[Crossref]

J. Mod. Opt. (2)

R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, “Polarization dependence on downconversion emission angle: investigation of the ’migdall effect’,” J. Mod. Opt. 58, 312–317 (2011).
[Crossref]

W. Grice, R. Bennink, P. Evans, T. Humble, and J. Schaake, “Auxiliary entanglement in photon pairs for multi-photon entanglement,” J. Mod. Opt. 59, 1–8 (2012).

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
[Crossref]

Nature (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Nature Photon (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.., “Detecting single infrared photons with 93% system efficiency,” Nature Photon 7, 210–214 (2013).
[Crossref]

New J. Phys. (2)

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys. 12, 093027 (2010).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rep. (1)

O. Guhne and G. Toth, “Entanglement detection,” Phys. Rep. 474, 1–75 (2009).
[Crossref]

Phys. Rev. A (7)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free bell inequality experiment,” Phys. Rev. A 49, 3209–3220 (1994).
[Crossref] [PubMed]

W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 63815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

P. Kwiat, A. Steinberg, R. Chiao, P. Eberhard, and M. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

Phys. Rev. Lett. (11)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

C. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref] [PubMed]

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

T. Herzog, J. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72, 629–632 (1994).
[Crossref] [PubMed]

T. Herzog, P. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett. 75, 3034–3037 (1995).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

D. Branning, W. Grice, R. Erdmann, and I. Walmsley, “Engineering the indistinguishability and entanglement of two photons,” Phys. Rev. Lett. 83, 955–958 (1999).
[Crossref]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA 46, 570 (1960).
[Crossref] [PubMed]

Quantum Inform. Compu. (1)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inform. Compu. 3, 480–502 (2003).

Rev. Mod. Phys. (2)

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Mod. Phys. 38, 447–452 (1966).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Science (1)

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Other (4)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,” vol. 1 (1984), pp. 175–179.

K. Zielnicki, A. B. U’Ren, and P. Kwiat, “Joint spectral measurement,” (2014). Unpublished.

R. Rangarajan, “Photonic sources and detectors for quantum information protocols: A trilogy in eight parts,” Ph.D. thesis, University of Illinois at Urbana-Champaign, United States – Illinois (2010).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences) (Cambridge University, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simplified model of JSI with frequency correlations due to conservation of energy. Spectral filters reduce correlation; shown in (a) no filtering, (b) filter width equal to the pump bandwidth, and (c) filter width equal to 1 5 of the pump bandwidth.

Fig. 2
Fig. 2

Joint spectral intensity correlations arising from the various components of the joint spectral intensity, including (a) energy envelope, (b) transverse momentum, (c) longitudinal momentum, and (d) the overall JSI formed by the product of these. This demonstrates how energy and momentum conservation constraints can compensate each other to produce an approximately factorable joint spectrum without spectral filtering. Also note that the longitudinal phase-matching sinc lobes (in c) may be supressed.

Fig. 3
Fig. 3

Predicted dependence of joint spectrum on downconversion emission angle (indicated in the upper right corner of each plot). The optimally separable case occurs when the pump group velocity matches the longitudinal component of the signal and idler group velocities.

Fig. 4
Fig. 4

Schematic diagrams of: (a) Source geometry and relevant parameters in our implementation of the engineered source, used for all following measurements. The pump is focused to a waist of w0 = 60μm. The signal and idler collection modes are oriented at ±16° with respect the pump axis and are characterized by a beamwaist of 55 μm); these modes meet at the approximate center of the BBO crystal of length L = 300μm. The signal and idler modes are collimated before passing through additional measurement-dependent optics (e.g., waveplates and polarizers), and finally are collected into single-mode fiber (note that the fiber-coupling optics are not shown). (b) Fiber spectroscopy. A half-wave plate (HWP) and polarizing beamsplitter (PBS) are used to combine the signal and idler modes into a 400-m length of single-mode fiber (SMF). A fiber beamsplitter delivers light to two avalanche photodiodes (APD), which are analyzed by a time-to-digital converter (TDC) together with a synchronization signal from the pump via a photodiode (PD). (c) Two-dimensional Fourier spectroscopy. The common-path polarization interferometer uses a half-wave plate to rotate light into the diagonal basis, followed by a birefringent quartz plate to initially delay horizontally polarized light (H) relative to vertically polarized light (V). Then, quartz wedges are used to variably delay V relative to H. Finally, another HWP rotates back into the H/V basis and a polarizing beam splitter is used to pick off the H component. Two of these polarization interferometers are used in coincidence to analyze the joint spectrum. (d) Correlation function measurement. We measure g(2) in one arm of SPDC using a Hanbury Brown-Twiss interferometer. (e) Two-source Hong-Ou-Mandel interferometer. We herald the presence of one photon pair produced from each of two orthogonally oriented BBO crystals. A suppression of four-fold coincidence counts at zero delay indicates the absence of which-crystal distinguishing information. A relative signal-idler delay can be introduced by a pair of quartz wedges in one arm.

Fig. 5
Fig. 5

Sketch of the frequency-domain signal resulting from two-dimensional Fourier spectroscopy.

Fig. 6
Fig. 6

(a–c) Comparison of measurements of the engineered source joint spectrum with no spectral filtering and an 8-nm bandwidth pump using (a) diagonal Fourier spectroscopy (b) fiber spectroscopy and (c) a theoretical simulation showing ideal behavior. Corresponding purities are (a) 0.88 ± 0.02, (b) 0.87 ± 0.03, and (c) 0.998. (d) Results from two-source HOM with visibility 0.61 ± 0.05. This is in agreement with accompanying g(2) measurements, which imply a maximum visibility of 0.66 ± 0.02. The line shown is a Gaussian fit to the data.

Fig. 7
Fig. 7

(a) Calculated relationship between g(2) for a source with K (effective) thermal modes. (b) Measured values of inverse Schmidt number 1/K, measured from the correlation function. This is equal to heralded single-photon purity or g(2)(0) − 1. The horizontal axis shows a variable amount of group delay dispersion (GDD) applied to our pump using a prism-pair compressor, controlling pump temporal chirp. A simple prediction based only on second- and third-order dispersion is shown in blue.

Fig. 8
Fig. 8

(a) Diagram of the two-crystal scheme for polarization entanglement. We use a diagonally polarized pump and two orthogonally oriented type-I SPDC crystals to produce pairs of polarization-entangled photons. The crystal labels indicate the polarization of the SPDC cone produced by each crystal. Due to the spatial separation of the two crystals, we use walk-off in birefringent α-BBO to combine the photons into a single spatial mode. The quartz plate and quartz wedges compensate for the temporal delay between the photons. (b) Diagonal-diagonal coincidence counts as a function of phase offset between H and V, demonstrating polarization correlation / anticorrelation.

Fig. 9
Fig. 9

Calculated purity and heralding efficiency as a function of filter bandwidth with rectangular filters for both (a,b) correlated, unengineered source and (c,d) engineered source. The solid lines show asymmetric collection into the signal and idler modes with filtering applied only to the signal (heralding) photon, shown as solid black line, and applied only to the idler (heralded) photon, shown as solid green line. The dashed lines show symmetric collection with filtering applied to both modes.

Tables (1)

Tables Icon

Table 1 Conditions for SPDC separability [24,27] where k′ is the reciprocal group velocity ( d k d ω ), wo and σ are the pump beam waist and bandwidth respectively, L is the crystal length, θs and θi are the signal and idler emission angles inside the crystal, Φmax is the maximum angular spread about the signal and idler emission angles, and ρ0 is the walkoff angle. Condition (4) assumes frequency-degenerate collection, while (1)(3) apply generally.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f A , B = i λ i g A , i g B , i ,
K = 1 i λ i 2 .
| ψ = | vac + η d k s d k i F ( k s , k i ) a ^ s ( k s ) a ^ i ( k i ) | vac .
F ( k s , k i ) = ( k s ) ( k i ) α ( ω s + ω i ) ϕ ( k s , k i ) ,
ϕ ( k s , k i ) = exp [ w 0 2 4 ( k x 2 + k y 2 ) ] sinc [ L 2 Δ k ] exp [ i k x 2 + k y 2 2 k p z 0 ] exp [ i L 2 ( k p + k z + k y tan ρ 0 ) ]
Δ k = k p k z k x 2 + k y 2 2 k p + k y tan ρ 0
f ( ν s , ν i ) = A exp [ ( ν s 2 + ν i 2 ) ( 1 4 σ d 2 + 1 4 σ a 2 ) 2 ν s ν i ( 1 4 σ a 2 1 4 σ d 2 ) ] .
P = 1 ( r 1 r + 1 ) 2 ,

Metrics