Abstract

A graded index porous optical fiber incorporating an air-hole array featuring variable air-hole diameters and inter-hole separations is proposed, fabricated, and characterized in a view of the fiber potential applications in low-loss, low-dispersion terahertz guidance. The proposed fiber features simultaneously low modal and intermodal dispersions, as well as low loss in the terahertz spectral range. We experimentally demonstrate that graded index porous fibers exhibit smaller pulse distortion, larger bandwidth, and higher excitation efficiency when compared to fibers with uniform porosity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polymer microstructured optical fibers for terahertz wave guiding

Bora Ung, Anna Mazhorova, Alexandre Dupuis, Mathieu Rozé, and Maksim Skorobogatiy
Opt. Express 19(26) B848-B861 (2011)

Terahertz dielectric waveguides

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott
Adv. Opt. Photon. 5(2) 169-215 (2013)

Two-wire terahertz fibers with porous dielectric support

Andrey Markov and Maksim Skorobogatiy
Opt. Express 21(10) 12728-12743 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref] [PubMed]
  2. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
    [Crossref] [PubMed]
  3. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
    [Crossref] [PubMed]
  4. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
    [Crossref]
  5. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [Crossref] [PubMed]
  6. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
    [Crossref] [PubMed]
  7. S. Atakaramians, S. Afshar, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
    [Crossref]
  8. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).
  9. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [Crossref] [PubMed]
  10. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
    [Crossref] [PubMed]
  11. S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5(2), 169–215 (2013).
    [Crossref]
  12. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [Crossref] [PubMed]
  13. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [Crossref]
  14. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
    [Crossref]
  15. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
    [Crossref]
  16. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
    [Crossref] [PubMed]
  17. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
    [Crossref]
  18. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguide with inner dielectric coatings,” Appl. Phys. Lett. 104, 093110 (2008).
  19. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
    [Crossref] [PubMed]
  20. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [Crossref] [PubMed]
  21. A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
    [Crossref] [PubMed]
  22. A. Markov and M. Skorobogatiy, “Hybrid plasmonic terahertz fibers for sensing applications,” Appl. Phys. Lett. 103(18), 181118 (2013).
    [Crossref]
  23. A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31, 2587–2600 (2014).
  24. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
    [Crossref] [PubMed]
  25. M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
    [Crossref] [PubMed]
  26. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref] [PubMed]
  27. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  28. J. Anthony, R. Leonhardt, A. Argyros, and M. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  29. M. Cvijetic and I. B. Djordjevic, Advanced Optical Communication Systems and Networks (Arctech House, 2013).
  30. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications Volume VIA: Components and Subsystems, 6th ed., (Academic Press, 2013).
  31. G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
    [Crossref]
  32. J. D. Downie, J. E. Hurley, D. V. Kuksenkov, C. M. Lynn, A. E. Korolev, and V. N. Nazarov, “Transmission of 112 Gb/s PM-QPSK signals over up to 635 km of multimode optical fiber,” Opt. Express 19(26), B363–B369 (2011).
    [Crossref] [PubMed]
  33. G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed., (Wiley, 2002).
  34. Y. Akimoto, M. Asai, K. Koike, K. Makino, and Y. Koike, “Poly(styrene)-based graded-index plastic optical fiber for home networks,” Opt. Lett. 37(11), 1853–1855 (2012).
    [Crossref] [PubMed]
  35. K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
    [Crossref] [PubMed]
  36. R. Kruglov, S. Loquai, C. A. Bunge, O. Ziemann, B. Schmauss, and J. Vinogradov, “10 Gbit/s short-reach transmission over 35 m large-core graded-index polymer optical fiber,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011, p 1–3.
  37. M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21(20), 24254–24266 (2013).
    [Crossref] [PubMed]
  38. D. S. Montero and C. Vázquez, “Analysis of the electric field propagation method: theoretical model applied to perfluorinated graded-index polymer optical fiber links,” Opt. Lett. 36(20), 4116–4118 (2011).
    [Crossref] [PubMed]
  39. R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
    [Crossref]
  40. M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
    [Crossref]
  41. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
    [Crossref] [PubMed]
  42. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).
  43. A. Markov, A. Mazhorova, and M. Skorobogatiy, “Planar Porous THz Waveguides for Low-Loss Guidance and Sensing Applications,” IEEE Transactions on Terahertz Science and Technology 3(1), 96–102 (2013).
    [Crossref]
  44. M. Skorobogatiy and N. Guo, “Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers,” Opt. Lett. 32(8), 900–902 (2007).
    [Crossref] [PubMed]

2014 (1)

2013 (6)

2012 (3)

2011 (8)

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref] [PubMed]

D. S. Montero and C. Vázquez, “Analysis of the electric field propagation method: theoretical model applied to perfluorinated graded-index polymer optical fiber links,” Opt. Lett. 36(20), 4116–4118 (2011).
[Crossref] [PubMed]

J. D. Downie, J. E. Hurley, D. V. Kuksenkov, C. M. Lynn, A. E. Korolev, and V. N. Nazarov, “Transmission of 112 Gb/s PM-QPSK signals over up to 635 km of multimode optical fiber,” Opt. Express 19(26), B363–B369 (2011).
[Crossref] [PubMed]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
[Crossref] [PubMed]

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

2010 (2)

2009 (4)

2008 (6)

2007 (5)

M. Skorobogatiy and N. Guo, “Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers,” Opt. Lett. 32(8), 900–902 (2007).
[Crossref] [PubMed]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

2006 (1)

2004 (1)

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Abbott, D.

Adam, A. J.

Afshar, S.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Afshar V, S.

Akimoto, Y.

Allard, J. F.

Anthony, J.

Argyros, A.

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, A. Argyros, and M. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Arrue, J.

Asai, M.

Atakaramians, S.

Ayesta, I.

Bachmann, A.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Bang, O.

Barton, G.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Bikandi, I.

Bimberg, D.

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguide with inner dielectric coatings,” Appl. Phys. Lett. 104, 093110 (2008).

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

Chen, H. W.

Chen, L. J.

Chinnappan, R.

Cho, M.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Désévédavy, F.

Downie, J. D.

Dubois, C.

Dupuis, A.

Eijkelenborg, M. A.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Fiol, G.

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

Fischer, B. M.

Fisher, B. M.

S. Atakaramians, S. Afshar, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Guerboukha, H.

Guo, N.

Han, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Han, Y.

Harrington, J. A.

Harvey, J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Harvey, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

Henry, G.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Hirst, D.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Hurley, J. E.

Illarramendi, M. A.

Inoue, A.

Issa, N. A.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Ito, H.

Ito, T.

Iwai, K.

Jepsen, P. U.

Jiménez, F.

Jung, E.

Kado, T.

Kao, T. F.

Kim, J.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Klein, K. F.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Klein, K.-F.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Koike, K.

Koike, Y.

Korolev, A. E.

Koshiba, M.

Kuksenkov, D. V.

Large, M.

Large, M. C. J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Ledentsov, N. N.

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

Leonhardt, R.

Lott, J. A.

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

Lu, J. Y.

Lwin, R.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Lynn, C. M.

Makino, K.

Manos, S.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Markov, A.

Matsuura, Y.

Mazhorova, A.

Minamide, H.

Mitrofanov, O.

Miyagi, M.

Monro, T. M.

Montero, D. S.

Moon, K.

Morris, D.

Nazarov, V. N.

Ng, A.

Nielsen, K.

Park, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Planken, P. C.

Poisel, H.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Pok, W.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Poladian, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Rasmussen, H. K.

Rozé, M.

Saitoh, K.

Shi, Y. W.

Skorobogata, O.

Skorobogatiy, M.

A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31, 2587–2600 (2014).

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref] [PubMed]

A. Markov, A. Mazhorova, and M. Skorobogatiy, “Planar Porous THz Waveguides for Low-Loss Guidance and Sensing Applications,” IEEE Transactions on Terahertz Science and Technology 3(1), 96–102 (2013).
[Crossref]

A. Markov and M. Skorobogatiy, “Hybrid plasmonic terahertz fibers for sensing applications,” Appl. Phys. Lett. 103(18), 181118 (2013).
[Crossref]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
[Crossref] [PubMed]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
[Crossref] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref] [PubMed]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[Crossref]

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[Crossref] [PubMed]

A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref] [PubMed]

M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[Crossref]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

M. Skorobogatiy and N. Guo, “Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers,” Opt. Lett. 32(8), 900–902 (2007).
[Crossref] [PubMed]

Stoeffler, K.

Sun, C. K.

Tagaya, A.

Tang, X. L.

Ung, B.

Vázquez, C.

Walther, M.

Zagari, J.

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

Zourob, M.

Zubia, J.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (6)

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguide with inner dielectric coatings,” Appl. Phys. Lett. 104, 093110 (2008).

A. Markov and M. Skorobogatiy, “Hybrid plasmonic terahertz fibers for sensing applications,” Appl. Phys. Lett. 103(18), 181118 (2013).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[Crossref]

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[Crossref]

Electron. Lett. (2)

M. A. Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[Crossref]

G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS,” Electron. Lett. 47(14), 810–811 (2011).
[Crossref]

IEEE Transactions on Terahertz Science and Technology (1)

A. Markov, A. Mazhorova, and M. Skorobogatiy, “Planar Porous THz Waveguides for Low-Loss Guidance and Sensing Applications,” IEEE Transactions on Terahertz Science and Technology 3(1), 96–102 (2013).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

S. Atakaramians, S. Afshar, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Opt. Express (16)

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref] [PubMed]

M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
[Crossref] [PubMed]

A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref] [PubMed]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
[Crossref] [PubMed]

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[Crossref] [PubMed]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21(20), 24254–24266 (2013).
[Crossref] [PubMed]

K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref] [PubMed]

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref] [PubMed]

J. D. Downie, J. E. Hurley, D. V. Kuksenkov, C. M. Lynn, A. E. Korolev, and V. N. Nazarov, “Transmission of 112 Gb/s PM-QPSK signals over up to 635 km of multimode optical fiber,” Opt. Express 19(26), B363–B369 (2011).
[Crossref] [PubMed]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
[Crossref] [PubMed]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
[Crossref] [PubMed]

Opt. Lett. (7)

Other (6)

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).

M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).

G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed., (Wiley, 2002).

R. Kruglov, S. Loquai, C. A. Bunge, O. Ziemann, B. Schmauss, and J. Vinogradov, “10 Gbit/s short-reach transmission over 35 m large-core graded-index polymer optical fiber,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011, p 1–3.

M. Cvijetic and I. B. Djordjevic, Advanced Optical Communication Systems and Networks (Arctech House, 2013).

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications Volume VIA: Components and Subsystems, 6th ed., (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Modal propagation properties of the dielectric THz fibers. Blue lines correspond to the fundamental mode of the fiber, red and green lines – to higher order modes.
Fig. 2
Fig. 2 (a) The schematic representation and (b) the theoretical index profile of the designed GI-mPOF. The dots correspond to the localized refractive index at each layer, while the solid line is the theoretical index profile calculated using Eq. (2). The cross-sections of (c) GI-mPOF (outer diameter OD = 1.35mm) and (d) mPOF (OD = 1.47mm)
Fig. 3
Fig. 3 (a) The modal refractive indices and (b) the group velocities of the proposed GI-mPOF and the traditional mPOF. The dots’ colors represent the logarithmic flux coupling coefficient of each mode at the given frequency.
Fig. 4
Fig. 4 The coupling efficiency by power for the proposed GI-mPOF and the traditional mPOF
Fig. 5
Fig. 5 (a) The individual mode dispersion and (b) the intermodal dispersion of the two fibers. The red solid lines are the dispersion properties of the proposed GI-mPOF, while the black lines show that of the traditional mPOF.
Fig. 6
Fig. 6 Experimental setup with the fiber mounted in the apertures.
Fig. 7
Fig. 7 (a) The time-domain traces of the THz electric field measured at different fiber lengths of the proposed GI-mPOF (left) and the traditional mPOF (right). The black trace represents the THz field after propagating a short distance in the fiber; the red trace represents a longer distance, and the blue trace is for the whole fiber. The initial lengths of the fibers used in the experiment are about 20 cm. (b) Mode profiles simulated at 0.5 THz for these two fibers.
Fig. 8
Fig. 8 The comparison between measured pulse and reconstructed pulse for (a) the GI-mPOF with 6.48 cm length and (b) the mPOF with 5.74 cm length. The black solid line represents the experimentally measured electric trace, while the red dot line corresponds to the reconstructed pulse based on the simulation results.
Fig. 9
Fig. 9 The pulse duration of the designed GI-mPOF (black) and the mPOF (red). Dots - experimental results. Dashed lines - results of the fitting based on Eq. (7). Solid lines – pulse duration calculated based on the reconstructed pulses.
Fig. 10
Fig. 10 Electric field amplitude as measured by the THz-TDS setup for the case of (a) GI-mPOF and (b) mPOF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n(r)= n 0 (1a (r/R) g ) 1/2
ε(r)=n (r) 2 = ( 1 2 f) 2 Δ ε 2 + ε a ε p +( 1 2 f)Δε
f(r)= π 2 3 d 2 Λ 2
C m = 1 4 dxdy( E m * (x,y)× H input (x,y)+ E input (x,y)× H m * (x,y)) × 1 1 2 Re dxdy( E input * (x,y)× H input (x,y)) × 1 2 Re dxdy( E m * (x,y)× H m (x,y))
E Input (x,y)= x 2P π σ 2 exp[ y 2 2 σ 2 ] H Input (x,y)= y 1 μ 0 / ε 0 2P π σ 2 exp[ y 2 2 σ 2 ], for x 2 + y 2 R 2 ; E Input (x,y)=0, H Input (x,y)=0, for x 2 + y 2 > R 2 .
Δ ν g 2 = ν g 2 Δ ν g 1 2
τ 2 (z) = τ 0 2 8 + z 2 ( [ v g 2 v g 1 2 ]+2 D 2 τ 0 )
Ε(t)= dω m C m (ω) e i(βLωt) dxdy Ε m (x,y,ω)
τ 2 = E t | t 2 | E t / E t | E t ( E t |t| E t / E t | E t ) 2

Metrics