Abstract

Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N’-methyl-4’-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Twenty years of terahertz imaging [Invited]

Daniel M. Mittleman
Opt. Express 26(8) 9417-9431 (2018)

Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array

Alan WeiMin Lee and Qing Hu
Opt. Lett. 30(19) 2563-2565 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  2. K. Kawase, “Terahertz imaging for drug detection and large-scale integrated circuit inspection,” Opt. Photon. News 15(10), 34–39 (2004).
    [Crossref]
  3. T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).
  4. S. J. Oh, S.-H. Kim, K. Jeong, Y. Park, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Measurement depth enhancement in terahertz imaging of biological tissues,” Opt. Express 21(18), 21299–21305 (2013).
    [Crossref] [PubMed]
  5. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
    [Crossref]
  6. A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
    [Crossref]
  7. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  8. E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
    [Crossref]
  9. M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
    [Crossref] [PubMed]
  10. S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
    [Crossref]
  11. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [Crossref] [PubMed]
  12. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
    [Crossref]
  13. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
    [Crossref]
  14. T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
    [Crossref]
  15. S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
    [Crossref]
  16. N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
    [Crossref]
  17. A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
    [Crossref]
  18. S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37(4), 536–538 (2012).
    [PubMed]
  19. V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
    [Crossref]
  20. S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
    [Crossref] [PubMed]
  21. G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
    [Crossref]
  22. J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
    [Crossref]
  23. J. Warner, “Spatial resolution measurements in up-conversion from 10.6 μm to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
    [Crossref]
  24. R. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
    [Crossref]
  25. R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
    [Crossref] [PubMed]
  26. H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
    [Crossref]
  27. F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
    [Crossref] [PubMed]
  28. Y. J. Ding and W. Shi, “Observation of THz to near-Infrared parametric conversion in ZnGeP(2) crystal,” Opt. Express 14(18), 8311–8316 (2006).
    [Crossref] [PubMed]
  29. M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
    [Crossref]
  30. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  31. Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
    [Crossref]
  32. S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
    [Crossref]
  33. S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
    [Crossref] [PubMed]
  34. P. Tekavec, “Terahertz imaging: terahertz parametric oscillator enables sensitive imaging,” Laser Focus World 50, 113–114 (2014).

2014 (5)

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

P. Tekavec, “Terahertz imaging: terahertz parametric oscillator enables sensitive imaging,” Laser Focus World 50, 113–114 (2014).

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

2013 (9)

S. J. Oh, S.-H. Kim, K. Jeong, Y. Park, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Measurement depth enhancement in terahertz imaging of biological tissues,” Opt. Express 21(18), 21299–21305 (2013).
[Crossref] [PubMed]

S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
[Crossref] [PubMed]

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

2012 (2)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37(4), 536–538 (2012).
[PubMed]

2011 (2)

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

2010 (4)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
[Crossref] [PubMed]

2007 (1)

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

2006 (1)

2005 (3)

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[Crossref] [PubMed]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

2004 (1)

K. Kawase, “Terahertz imaging for drug detection and large-scale integrated circuit inspection,” Opt. Photon. News 15(10), 34–39 (2004).
[Crossref]

2000 (1)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

1997 (1)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

1996 (1)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[Crossref]

1989 (1)

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
[Crossref] [PubMed]

1970 (1)

R. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[Crossref]

1968 (1)

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 μm to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

Abbott, D.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Abraham, E.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

Andrews, R.

R. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[Crossref]

Araki, T.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bastian, M.

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Baudrit, B.

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Bolívar, P. H.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Boppel, S.

Burdette, D.

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

Chen, J. C.

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Delagnes, J. C.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

Ding, Y. J.

Du, J.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Ermolaev, D. M.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Fan, S.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Foley, C. P.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gavrilenko, V. I.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

Gordon, K. C.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Guo, R.

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
[Crossref] [PubMed]

Haaser, M.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Hamano, A.

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

Han, S.-P.

Hanham, S. M.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Hellicar, A. D.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[Crossref]

Hochrein, T.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, K.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

Huh, Y.-M.

Huhn, A. K.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Hwang, J.-S.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Ihring, A.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Ikar’i, T.

Ishi, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Ito, H.

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
[Crossref] [PubMed]

Itsuji, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Jansen, C.

Jeong, K.

Jewariya, M.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

Jördens, C.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Kajiki, K.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Karpowicz, N.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Kaushik, S.

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

Kawase, K.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

K. Kawase, “Terahertz imaging for drug detection and large-scale integrated circuit inspection,” Opt. Photon. News 15(10), 34–39 (2004).
[Crossref]

Khan, M. J.

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

Kim, D. Y.

Kim, N.

Kim, S.-H.

Ko, H.

Koch, M.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Koizumi, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Koyama, Y.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Krozer, V.

Krumbholz, N.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Kubota, O.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Kurashina, S.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Lee, D. H.

Leslie, K. E.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Liau, Z.-L.

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

Lin, K.-I.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Lisauskas, A.

Macfarlane, J. C.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Maleev, N. A.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Marder, S. R.

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
[Crossref] [PubMed]

Maremyanin, K. V.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Matsukawa, T.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Max, A.

Meyer, H.-G.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Mickan, S.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Minamide, H.

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
[Crossref] [PubMed]

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

Miyamoto, K.

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

Miyoshi, M.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Morimoto, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Mosbacker, H. L.

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

Mounaix, P.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

Munch, J.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Naelapää, K.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Nawata, K.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Nikolic, N.

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Notake, T.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Nuss, M. C.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

Oda, N.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Oh, S. J.

Ohno, S.

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ouchi, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Pan, H.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

Park, J.-W.

Park, K. H.

Park, Y.

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Pepper, M.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Perry, J. W.

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
[Crossref] [PubMed]

Peters, O.

Popov, V. V.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Qi, F.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Rades, T.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Rantanen, J.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Roskos, H. G.

Salhi, M.

Sasaki, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Sawanaka, K.

Schaefer, W. P.

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
[Crossref] [PubMed]

Scheller, M.

Schinkel, U.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Schirmer, M.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Sekiguchi, R.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Sertel, K.

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

Shapoval, S. Y.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Shi, W.

Shin, J.-H.

Son, J.-H.

Spickermann, G.

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

Strachan, C. J.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Sudou, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Suh, J.-S.

Taday, P. F.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Takida, Y.

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer,” Opt. Lett. 39(5), 1294–1297 (2014).
[Crossref] [PubMed]

Tekavec, P.

P. Tekavec, “Terahertz imaging: terahertz parametric oscillator enables sensitive imaging,” Laser Focus World 50, 113–114 (2014).

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Trichopoulos, G. C.

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

Tsuboi, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Usuki, Y.

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

van Doorn, T.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Vieweg, N.

Warner, J.

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 μm to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

Wietzke, S.

Wietzker, S.

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

Wu, E.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[Crossref]

Xu, J.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Yamazaki, T.

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Yasuda, T.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[Crossref] [PubMed]

Yasui, T.

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[Crossref] [PubMed]

Yoon, Y.-J.

Younus, A.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

Zeitler, J. A.

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

Zemlyakov, V. E.

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

Zeng, H.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

Zhang, J.

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

R. Guo, T. Ikar’i, J. Zhang, H. Minamide, and H. Ito, “Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature,” Opt. Express 18(16), 16430–16436 (2010).
[Crossref] [PubMed]

Zhang, X.-C.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[Crossref]

Zhong, H.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Zhou, Q.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (8)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997).
[Crossref]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69(8), 1026–1028 (1996).
[Crossref]

A. K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, and P. H. Bolívar, “Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples,” Appl. Phys. Lett. 102(12), 121102 (2013).
[Crossref]

V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett. 98(15), 153504 (2011).
[Crossref]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 μm to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, “High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Appl. Phys. Lett. 97(12), 121106 (2010).
[Crossref]

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102(24), 241110 (2013).
[Crossref]

S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, “Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Lett. 104(10), 101106 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
[Crossref]

Eur. J. Pharm. Biopharm. (1)

M. Haaser, K. Naelapää, K. C. Gordon, M. Pepper, J. Rantanen, C. J. Strachan, P. F. Taday, J. A. Zeitler, and T. Rades, “Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging,” Eur. J. Pharm. Biopharm. 85(33 Pt B), 1095–1102 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. J. Khan, J. C. Chen, Z.-L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17(1), 79–84 (2011).
[Crossref]

T. Yasui, M. Jewariya, T. Yasuda, M. Schirmer, T. Araki, and E. Abraham, “Real-time two-dimensional spatiotemporal terahertz imaging based on noncollinear free-Space electrooptic sampling and application to functional terahertz imaging of moving object,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8600110 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antenn. Propag. 61(4), 1733–1740 (2013).
[Crossref]

J. Eur. Opt. Soc.: Rapid Publ. (1)

S. Wietzker, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07013 (2007).
[Crossref]

J. Infrared Millim. THz W. (1)

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. THz W. 35, 118–130 (2014).

Laser Focus World (1)

P. Tekavec, “Terahertz imaging: terahertz parametric oscillator enables sensitive imaging,” Laser Focus World 50, 113–114 (2014).

Mater. Sci. Forum (1)

A. Hamano, S. Ohno, H. Minamide, H. Ito, and Y. Usuki, “High-sensitivity high-resolution full-wafer imaging of the properties of large n-type SiC using the relative reflectance of two terahertz waves,” Mater. Sci. Forum 778–780, 491–494 (2014).
[Crossref]

Microelectron. J. (1)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[Crossref]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Photon. News (1)

K. Kawase, “Terahertz imaging for drug detection and large-scale integrated circuit inspection,” Opt. Photon. News 15(10), 34–39 (2004).
[Crossref]

Proc. SPIE (1)

N. Oda, T. Ishi, S. Kurashina, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, and T. Sasaki, “Palm-size and real-time terahertz imager, and its application to development of terahertz sources,” Proc. SPIE 8716, 871603 (2013).
[Crossref]

Science (1)

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245(4918), 626–628 (1989).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Supercond. Sci. Technol. (1)

J. Du, A. D. Hellicar, K. E. Leslie, N. Nikolic, S. M. Hanham, J. C. Macfarlane, and C. P. Foley, “Towards large scale HTS Josephson detector arrays for THz imaging,” Supercond. Sci. Technol. 26(11), 115012 (2013).
[Crossref]

Supplementary Material (3)

» Media 1: MOV (178 KB)     
» Media 2: MOV (422 KB)     
» Media 3: MOV (942 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experiment setup: FL, focal lens; PBS, polarizing beam splitter; OAP, off-axis parabolic mirror; HWP, half-wavelength plate; and OBJ, object plane. ITO glass is a glass plate coated with an indium tin oxide film. Filter 1 absorbs the green laser and is clear for the near IR laser. Filter 2 is a Ge plate. Filters 3 are bandpass filters that block the pumping laser for up-conversion.
Fig. 2
Fig. 2 Imaging results: (a-1) a metal ruler with a self-made sample with a RIKEN logo shape aperture cut from aluminium foil; (a-2) imaging result of (a-1); (b-1) another sample with a larger RIKEN logo shape aperture; (b-2) the imaging result of (b-1), showing the THz beam size.
Fig. 3
Fig. 3 Resolution analysis: (a) colour-map of the imaging results presented in Fig. 2(a-1); (b) and (c) respectively show the profiles along the dashed green and the dotted orange line shown in (a). Centre parts were enlarged to clarify details.
Fig. 4
Fig. 4 Diffraction and interference results: (a-1) sample; (a-2) original image of the diffraction pattern; (a-3) enhanced image to show the diffraction more clearly; and (b-1) silicon wafer with both surfaces polished. Interference between the two surfaces is shown in (b-2). Videos of interference pattern moving along with the wafer (Media 1) and changing along with tilting of the wafer (Media 2) are supplied. (b-3) Enhanced interference pattern after procession, as described in the text.
Fig. 5
Fig. 5 One single-frame excerpts from a video (Media 3) recording the real-time THz imaging for doping uniformity of a hand-held n-type GaAs wafer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = 1.22 λ D B D o ,

Metrics