Abstract

We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%. Together with Yb-doped fiber amplifier technologies, Kagome fibers therefore appear as a promising tool for efficient generation of pulses with durations below 50 fs, energies ranging from 10 to several hundreds of µJ, and high average powers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber

Florian Emaury, Coralie Fourcade Dutin, Clara J. Saraceno, Mathis Trant, Oliver H. Heckl, Yang Y. Wang, Cinia Schriber, Frederic Gerome, Thomas Südmeyer, Fetah Benabid, and Ursula Keller
Opt. Express 21(4) 4986-4994 (2013)

Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier

K. Murari, G. J. Stein, H. Cankaya, B. Debord, F. Gérôme, G. Cirmi, O. D. Mücke, P. Li, A. Ruehl, I. Hartl, K.-H. Hong, F. Benabid, and F. X. Kärtner
Optica 3(8) 816-822 (2016)

High-power two-cycle ultrafast source based on hybrid nonlinear compression

L. Lavenu, M. Natile, F. Guichard, X. Délen, M. Hanna, Y. Zaouter, and P. Georges
Opt. Express 27(3) 1958-1967 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 µJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a grating stretcher-compressor,” Opt. Lett. 33(13), 1527–1529 (2008).
    [Crossref] [PubMed]
  2. A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, “22 GW peak-power fiber chirped-pulse-amplification system,” Opt. Lett. 39(24), 6875–6878 (2014).
    [Crossref] [PubMed]
  3. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
    [Crossref]
  4. A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36(17), 3428–3430 (2011).
    [Crossref] [PubMed]
  5. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003).
    [Crossref] [PubMed]
  6. C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37(21), 4407–4409 (2012).
    [Crossref] [PubMed]
  7. J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
    [Crossref] [PubMed]
  8. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
    [Crossref] [PubMed]
  9. J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
    [Crossref] [PubMed]
  10. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
    [Crossref] [PubMed]
  11. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  13. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF, “in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper p. CPDB4.
    [Crossref]
  14. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref]
  15. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  16. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
    [Crossref] [PubMed]
  17. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
    [Crossref] [PubMed]
  18. H. Layertec Gmb, https://www.layertec.de/en/shop/datasheet/101849 , accessed 2/8/2014.
  19. M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066502 (2005).
    [Crossref] [PubMed]
  20. F. Guichard, Y. Zaouter, M. Hanna, F. Morin, C. Hönninger, E. Mottay, F. Druon, and P. Georges, “Energy scaling of a nonlinear compression setup using passive coherent combining,” Opt. Lett. 38(21), 4437–4440 (2013).
    [Crossref] [PubMed]
  21. A. Klenke, S. Hädrich, M. Kienel, T. Eidam, J. Limpert, and A. Tünnermann, “Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression,” Opt. Lett. 39(12), 3520–3522 (2014).
    [Crossref] [PubMed]
  22. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
    [Crossref] [PubMed]

2014 (5)

2013 (4)

2012 (1)

2011 (3)

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2005 (1)

M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066502 (2005).
[Crossref] [PubMed]

2003 (1)

2001 (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

1997 (1)

1969 (1)

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
[Crossref]

Alharbi, M.

Baggett, J. C.

Benabid, F.

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Bergé, L.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Boullet, J.

Bradley, T.

Brunner, F.

Carstens, H.

Cormier, E.

Couairon, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

De Silvestri, S.

Debord, B.

Demmler, S.

Diebold, A.

Druon, F.

Dutin, C. F.

Eidam, T.

Emaury, F.

Ferencz, K.

Fisher, R. A.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
[Crossref]

Fourcade-Dutin, C.

Franco, M.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Furusawa, K.

Georges, P.

Gérôme, F.

Gèrôme, F.

Ghosh, D.

Gotschall, T.

Gottschall, T.

Guichard, F.

Gustafson, T. K.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
[Crossref]

Hädrich, S.

A. Klenke, S. Hädrich, M. Kienel, T. Eidam, J. Limpert, and A. Tünnermann, “Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression,” Opt. Lett. 39(12), 3520–3522 (2014).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, “22 GW peak-power fiber chirped-pulse-amplification system,” Opt. Lett. 39(24), 6875–6878 (2014).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37(21), 4407–4409 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

Hanna, M.

Hänsch, T. W.

Heckl, O. H.

Herrick, N.

Hoenninger, C.

Hoffmann, A.

Hoffmann, H.-D.

Hommelhoff, P.

Hönninger, C.

Husakou, A.

Innerhofer, E.

Jocher, C.

Keller, U.

Kelley, P. L.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
[Crossref]

Kienel, M.

Klenke, A.

Kling, M. F.

Krausz, F.

Krebs, M.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Limpert, J.

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, M. Kienel, T. Eidam, J. Limpert, and A. Tünnermann, “Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression,” Opt. Lett. 39(12), 3520–3522 (2014).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, “22 GW peak-power fiber chirped-pulse-amplification system,” Opt. Lett. 39(24), 6875–6878 (2014).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37(21), 4407–4409 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

Monro, T. M.

Morin, F.

Mottay, E.

Mysyrowicz, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Nisoli, M.

Nurhuda, M.

M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066502 (2005).
[Crossref] [PubMed]

Paschotta, R.

Poprawe, R.

Prade, B.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Richardson, D. J.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rothhardt, J.

Russbueldt, P.

Saraceno, C. J.

Sartania, S.

Sartorius, T.

Schneider, W.

Schriber, C.

Spielmann, Ch.

Stebbings, S. L.

Südmeyer, T.

Svelto, O.

Szipöcs, R.

Trant, M.

Tünnermann, A.

A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, “22 GW peak-power fiber chirped-pulse-amplification system,” Opt. Lett. 39(24), 6875–6878 (2014).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, M. Kienel, T. Eidam, J. Limpert, and A. Tünnermann, “Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression,” Opt. Lett. 39(12), 3520–3522 (2014).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37(21), 4407–4409 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

Tzortzakis, S.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Udem, T.

van Groesen, E.

M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066502 (2005).
[Crossref] [PubMed]

Vernaleken, A.

Vincetti, L.

Wang, Y. Y.

Weitenberg, J.

Wheeler, N. V.

Zaouter, Y.

Appl. Phys. Lett. (1)

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14(4), 140 (1969).
[Crossref]

Opt. Express (3)

Opt. Lett. (13)

Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 µJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a grating stretcher-compressor,” Opt. Lett. 33(13), 1527–1529 (2008).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, “22 GW peak-power fiber chirped-pulse-amplification system,” Opt. Lett. 39(24), 6875–6878 (2014).
[Crossref] [PubMed]

F. Guichard, Y. Zaouter, M. Hanna, F. Morin, C. Hönninger, E. Mottay, F. Druon, and P. Georges, “Energy scaling of a nonlinear compression setup using passive coherent combining,” Opt. Lett. 38(21), 4437–4440 (2013).
[Crossref] [PubMed]

A. Klenke, S. Hädrich, M. Kienel, T. Eidam, J. Limpert, and A. Tünnermann, “Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression,” Opt. Lett. 39(12), 3520–3522 (2014).
[Crossref] [PubMed]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36(17), 3428–3430 (2011).
[Crossref] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003).
[Crossref] [PubMed]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37(21), 4407–4409 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066502 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and Fusion of Self-Guided Femtosecond Light Pulses in Air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (2)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF, “in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper p. CPDB4.
[Crossref]

H. Layertec Gmb, https://www.layertec.de/en/shop/datasheet/101849 , accessed 2/8/2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Image of the whole fiber and zoom on the hypocycloid-core shape. (b) Linear propagation properties, group velocity dispersion (red curve) and propagation losses (gray curve) of the hypocycloid-core Kagome fiber used in our experiment.
Fig. 2
Fig. 2 Experimental IC hypocycloid-core Kagome fiber based nonlinear compression setup. Insert: transverse profile of the fiber.
Fig. 3
Fig. 3 (a) Measured (left) and retrieved (right) FROG trace at 50 µJ. (b) Retrieved output spectrum, gray curve corresponds to the retrieved spectral phase.
Fig. 4
Fig. 4 (a) Retrieved 34 fs temporal profile, with associated peak-power. Insert: Emphasis on the time interval [-500 500] fs. (b) Beam caustic along two orthogonal axis. Insert: Typical far-field beam profile at 50 µJ of output energy.
Fig. 5
Fig. 5 (a) Fiber transmission efficiency with respect to the input energy. (b) M-squared evolution along two orthogonal axis with the input energy, gray arrows and diamonds indicate the displacement and the new position of M2 values after peak-power reduction.

Metrics