Abstract

In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700um2 (including bend induced effective area reduction) at a bend diameter of 32cm from a 35μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1dB/m while ensuring the higher order modes loss to be higher than 10dB/m at a wavelength of 1060nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM2 less than 1.1.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extending single mode performance of all-solid large-mode-area single trench fiber

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu
Opt. Express 22(25) 31078-31091 (2014)

Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber

Yehui Liu, Fangfang Zhang, Nan Zhao, Xianfeng Lin, Lei Liao, Yibo Wang, Jinggang Peng, Haiqing Li, LuYun Yang, NengLi Dai, and Jinyan Li
Opt. Express 26(3) 3421-3426 (2018)

Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality

Kun Peng, Huan Zhan, Li Ni, Xiaolong Wang, Yuying Wang, Cong Gao, Yuwei Li, Jianjun Wang, Feng Jing, and Aoxiang Lin
Appl. Opt. 55(35) 10133-10137 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10kW,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, 2014, paper CThA3 (2009).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  4. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
    [Crossref] [PubMed]
  5. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [Crossref] [PubMed]
  6. R. A. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Resonant bend loss in leakage channel fibers,” Opt. Lett. 37(15), 3147–3149 (2012).
    [Crossref] [PubMed]
  7. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
    [Crossref]
  8. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  9. X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  10. J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
    [Crossref] [PubMed]
  11. D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
    [PubMed]
  12. D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multi-trench fibers,” Opt. Express 21(22), 26663–26670 (2013).
    [Crossref] [PubMed]
  13. D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
    [Crossref]
  14. D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
    [Crossref] [PubMed]
  15. D. Jain, C. Baskiotis, and J. K. Sahu, “Large mode area pixelated trench fiber,” in Specialty Optical Fiber, Advance photonics congress, Barcelona, Spain, 2014, paper SoW4B.3.
  16. S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
    [Crossref]
  17. J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23(7), 388–389 (1973).
    [Crossref]
  18. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
    [Crossref]
  19. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27(15), 3010–3016 (2009).
    [Crossref]
  20. V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” in Fiber Lasers XI, Photonic West conference, San Francisco, Cali., 2014 Paper 8961.
  21. V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).
  22. Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).
  23. A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
    [Crossref] [PubMed]
  24. D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
    [Crossref] [PubMed]
  25. D. Jain, C. Baskiotis, J. Kim, and J. K. Sahu, “First demonstration of single trench fiber for delocalization of higher order modes,” [Contributed upgraded to Invited] ” in Conference on Lasers and Electro-Optics (CLEO), San Jose, Calif., 2014, paper SF1N.1.
    [Crossref]

2014 (5)

2013 (5)

2012 (1)

2009 (2)

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27(15), 3010–3016 (2009).
[Crossref]

2006 (1)

2004 (1)

2001 (2)

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).

1987 (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

1982 (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
[Crossref]

1973 (1)

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23(7), 388–389 (1973).
[Crossref]

Barankov, R. A.

Baskiotis, C.

Berka, Z.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Berkova, D.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Broeng, J.

Burrus, C. A.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23(7), 388–389 (1973).
[Crossref]

Chen, X.

Chomat, M.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Dhar, A.

Dianov, E. M.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

Dong, L.

Dunn, C.

Fevrier, S.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

Fini, J. M.

Foy, P.

Galvanauskas, A.

Gray, S.

Gu, G.

Han, W. T.

Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).

Hawkins, T.

Hawkins, T. W.

Hayer, M.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Hu, I. N.

Jain, D.

Jakobsen, C.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jones, M.

Jung, Y.

Kalichevsky-Dong, M. T.

Kaplan, A.

Kasik, I.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Kim, J.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
[Crossref] [PubMed]

Kim, Y. H.

Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).

Kong, F.

Langrova, A.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Li, M.-J.

Liem, A.

Likhachev, M. E.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

Limpert, J.

Liu, A.

Ma, X.

Macchesney, J. B.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
[Crossref]

Maiti, H. S.

Matejec, V.

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

May-Smith, T. C.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

Mondal, A. K.

Nagel, S. R.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
[Crossref]

Nicholson, J. W.

Nolte, S.

Nunez-Velazquez, M.

Paek, U. C.

Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).

Pal, M.

Parsons, J.

Paul, M. Ch.

Payne, D. N.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Petersson, A.

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Ramachandran, S.

Reich, M.

Sahu, J. K.

Saitoh, K.

Samson, B.

Schreiber, T.

Sen, R.

Sen, S.

Stone, J.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23(7), 388–389 (1973).
[Crossref]

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Tünnermann, A.

Walker, K. L.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
[Crossref]

Walton, D. T.

Wang, J.

Wei, K.

Zellmer, H.

Zenteno, L. A.

Zhu, C.

Appl. Phys. Lett. (1)

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23(7), 388–389 (1973).
[Crossref]

Ceram. Silik. (1)

V. Matejec, I. Kasik, D. Berkova, M. Hayer, M. Chomat, Z. Berka, and A. Langrova, “Properties of optical fiber performs prepared by inner coating of substrate tubes,” Ceram. Silik. 45(2), 62–69 (2001).

Electron. Lett. (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech. 30(4), 305–322 (1982).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (9)

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
[Crossref] [PubMed]

D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
[PubMed]

D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multi-trench fibers,” Opt. Express 21(22), 26663–26670 (2013).
[Crossref] [PubMed]

A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
[Crossref] [PubMed]

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

Y. H. Kim, U. C. Paek, and W. T. Han, “Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process,” Proc. SPIE 4282, 123 (2001).

Other (5)

D. Jain, C. Baskiotis, and J. K. Sahu, “Large mode area pixelated trench fiber,” in Specialty Optical Fiber, Advance photonics congress, Barcelona, Spain, 2014, paper SoW4B.3.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” in Fiber Lasers XI, Photonic West conference, San Francisco, Cali., 2014 Paper 8961.

M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10kW,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, 2014, paper CThA3 (2009).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

D. Jain, C. Baskiotis, J. Kim, and J. K. Sahu, “First demonstration of single trench fiber for delocalization of higher order modes,” [Contributed upgraded to Invited] ” in Conference on Lasers and Electro-Optics (CLEO), San Jose, Calif., 2014, paper SF1N.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The loss of LP01 and LP11 mode (least lossy orientation) and effective area of the LP01mode of a SIF w.r.t. bending diameters at 1060nm for two different core diameters and with a fixed core Δn of 0.0005(corresponding to an NA of 0.038). The loss of other HOMs is higher than LP11 modes.
Fig. 2
Fig. 2 The refractive index profile at different positions along the length of the preform. Blue and Red color corresponds to profiles at 0 degree and 90 degree angular positions respectively.
Fig. 3
Fig. 3 (a) Output image of the fiber at 1064nm captured with a CCD camera. (b) White light transmission spectra of 1.26m long fiber in bend and unbent configurations.
Fig. 4
Fig. 4 (a) Experimental set-up for modal verification of the fiber, (b) input mixed modes (LP01 and LP11) using phase plate,(c) output beam profiles for LP01 mode launch, and (d) output beam profiles for a mixed mode launch.
Fig. 5
Fig. 5 (a) Experimental set-up for single mode verification, (b) Output beam with respect to LP01 mode launch, and (c) output power with respect to LP01 and LP11 modes launch at different bend diameters. A 1.55m long fiber coiled at ~32cm (+/− 0.5cm) bend diameter was used in this experiment.
Fig. 6
Fig. 6 (a) Experimental set-up for single mode verification, (b) profile of the output beam with respect to LP01 mode launch, and (c) profile of output beam with respect to mixed mode launch. A 3m long fiber coiled at ~32cm (+/− 0.5cm) bend diameter was used in this experiment.
Fig. 7
Fig. 7 (a)Experimental set-up used for laser efficiency measurement, DCM-Dichroic mirror, FUT-fiber under test, HR-High reflectivity, HT-High transmission, λp = pump wavelength, and λs = signal wavelength, (b) output power as a function of pump power of 4%-4% laser cavity. Inset shows the output beam profile, and (c) output spectrum taken with an OSA (ANDO (AQ6370B)) resolution of 0.2nm.

Tables (1)

Tables Icon

Table 1 Comparative analysis of mode scaling for different NA.

Metrics