Abstract

An asymmetric polarization-based frequency scanning interferometer is proposed using the asymmetric polarimetric method. The proposed system controls the polarization direction of the beam using a polarizer and wave plate, along with a conventional interferometer system. By controlling the wave plate, it is possible to asymmetrically modulate the magnitude of the object and reference beam, which are divided by the polarizing beam splitter. Based on this principle, if the target object consists of both transparent and opaque parts with different polarization characteristics, each part can be measured. After a fast Fourier transform of the acquired interference signal, the shape of the object is obtained by analyzing its spectrum. The proposed system is evaluated in terms of measurement accuracy and noise robustness through a series of experiments to show the effectiveness of the system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization Sagnac interferometer with postmodulation for gravitational-wave detection

Peter T. Beyersdorf, M. M. Fejer, and R. L. Byer
Opt. Lett. 24(16) 1112-1114 (1999)

Lateral scanning white-light interferometer

Artur Olszak
Appl. Opt. 39(22) 3906-3913 (2000)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [Crossref]
  2. F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.
  3. K. Kitagawa, “Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry,” Opt. Lett. 39(14), 4172–4175 (2014).
    [Crossref] [PubMed]
  4. H. Akiyama, O. Sasaki, and T. Suzuki, “Sinusoidal wavelength-scanning interferometer using an acousto-optic tunable filter for measurement of thickness and surface profile of a thin film,” Opt. Express 13(25), 10066–10074 (2005).
    [Crossref] [PubMed]
  5. D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunablefilter,” Opt. Lett. 27(21), 1893–1895 (2002).
    [Crossref] [PubMed]
  6. W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
    [Crossref]
  7. Y. S. Ghim, A. Suratkar, and A. Davies, “Reflectometry-based wavelength scanning interferometry for thickness measurements of very thin wafers,” Opt. Express 18(7), 6522–6529 (2010).
    [Crossref] [PubMed]
  8. E. Goodwin and J. Wyant, Field Guide to Interferometric Optical Testing (SPIE, 2006).
  9. P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
    [Crossref]
  10. D. Kim and Y. Cho, “3-D surface profile measurement using an acousto-optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea 12(4), 281–287 (2008).
    [Crossref]
  11. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36(19), 4473–4482 (1997).
    [Crossref] [PubMed]
  12. F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurement of a transparent film using wavelength scanning interferometry,” Opt. Express 20(19), 21450–21456 (2012).
    [Crossref] [PubMed]
  13. R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
    [Crossref]
  14. J. C. Marron, “Frequency-scanning interferometry,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2004), paper OMA3.
  15. Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
    [Crossref]
  16. E. Hecht, Optics (Addison Wesley, 2001).
  17. M. Takeda and H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33(34), 7829–7837 (1994).
    [Crossref] [PubMed]
  18. M. Suematsu and M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30(28), 4046–4055 (1991).
    [Crossref] [PubMed]
  19. H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
    [Crossref]
  20. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  21. G. Bradski and A. Kaehler, Learning OpenCV: Compter Vision with the OpenCV Library (O’REILLY, 2008).

2014 (1)

2013 (2)

W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
[Crossref]

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

2012 (1)

2011 (1)

H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
[Crossref]

2010 (1)

2009 (1)

P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
[Crossref]

2008 (1)

2005 (1)

2002 (1)

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

1998 (1)

R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[Crossref]

1997 (1)

1994 (1)

1991 (1)

1982 (1)

Akiyama, H.

Barcellos, C.

P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
[Crossref]

Bou, Y.

W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
[Crossref]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Cho, Y.

Dandliker, R.

R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[Crossref]

Davies, A.

Gao, F.

F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurement of a transparent film using wavelength scanning interferometry,” Opt. Express 20(19), 21450–21456 (2012).
[Crossref] [PubMed]

H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
[Crossref]

F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.

Ghim, Y. S.

Hibino, K.

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

Ina, H.

Jiang, X.

F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurement of a transparent film using wavelength scanning interferometry,” Opt. Express 20(19), 21450–21456 (2012).
[Crossref] [PubMed]

H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
[Crossref]

F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.

Kim, D.

Kim, S.

Kim, Y.

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

Kitagawa, K.

Kobayashi, S.

Kong, H. J.

Kuo, W.

W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
[Crossref]

Kuwamura, S.

Lai, C.

W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
[Crossref]

Lee, Y.

Magalhaes, P.

P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
[Crossref]

Martin, H.

F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.

Mitsuishi, M.

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

Muhamedsalih, H.

F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurement of a transparent film using wavelength scanning interferometry,” Opt. Express 20(19), 21450–21456 (2012).
[Crossref] [PubMed]

H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
[Crossref]

Muhanedsalih, H.

F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.

Neto, P.

P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
[Crossref]

Salvade, Y.

R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[Crossref]

Sasaki, O.

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Suematsu, M.

Sugita, N.

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

Suratkar, A.

Suzuki, T.

Takeda, M.

Yamaguchi, I.

Yamamoto, H.

Zimmermann, E.

R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[Crossref]

Appl. Opt. (3)

J. Opt. (1)

R. Dandliker, Y. Salvade, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

W. Kuo, Y. Bou, and C. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol. 24(7), 075003 (2013).
[Crossref]

Opt. Eng. (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer,” Opt. Lasers Eng. 51(10), 1173–1178 (2013).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

P. Magalhaes, P. Neto, and C. Barcellos, “Phase shifting technique using generalization of Carre algorithm with many images,” Opt. Rev. 16(4), 432–441 (2009).
[Crossref]

Proc. SPIE (1)

H. Muhamedsalih, X. Jiang, and F. Gao, “Comparison of fast Fourier transform and convolution in wavelength scanning interferometry,” Proc. SPIE 8082, 80820Q (2011).
[Crossref]

Other (5)

E. Hecht, Optics (Addison Wesley, 2001).

J. C. Marron, “Frequency-scanning interferometry,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2004), paper OMA3.

E. Goodwin and J. Wyant, Field Guide to Interferometric Optical Testing (SPIE, 2006).

F. Gao, X. Jiang, H. Muhanedsalih, and H. Martin, “Wavelength scanning interferometry for measuring transparent films of the fusion targets,” in Proceedings of the 13th Conference of Metrology and Properties of Engineering Surfaces (2011), pp. 172–176.

G. Bradski and A. Kaehler, Learning OpenCV: Compter Vision with the OpenCV Library (O’REILLY, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical hardware setup for polarization-based frequency scanning interferometer (PFSI). (a) Schematic diagram. (b) Image of the actual setup.
Fig. 2
Fig. 2 Change in polarization according to the wave plate rotation. (a) The optical axis of the wave plate set as 0°. (b) The optical axis of the wave plate of wave plate set as 45°.
Fig. 3
Fig. 3 The resulting images from the polarization-based frequency spanning interferometer (PFSI). (a) The optical axis of the quarter wave plate is in line with the polarization of the incident beam. (b) The optical axis is rotated by roughly 45°.
Fig. 4
Fig. 4 Flowchart of algorithm.
Fig. 5
Fig. 5 Frequency spectrum for a multi-layer reflection signal. Peak A and B are generated by the interference between reference signal from mirror and reflection signals from the top of film and the top of mirror, respectively. Peak C is induced by self-interference between two reflections from film and mirror.
Fig. 6
Fig. 6 Step Height Standards target (VLSI SHS-50.0).
Fig. 7
Fig. 7 Sample images. (a) Image of interference fringes. (b) Reconstructed image of height.
Fig. 8
Fig. 8 Sample images used in experiment. (a) 3D model of target. (b) Interference fringes.
Fig. 9
Fig. 9 One-directional line profile of height map on the target shown in Fig. 8.
Fig. 10
Fig. 10 Reconstructed height map of the object according to selective peaks. (a) Surface of transparent film. (b) Surface of mirror.
Fig. 11
Fig. 11 Sample images. (a) of target and (b) of the interference fringe.
Fig. 12
Fig. 12 Images of the laser diode measurements. (a) Outside the laser diode. (b) Inside the laser diode.

Tables (1)

Tables Icon

Table 1 Results of repeatability experiment

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cosδ.
I max = I 1 + I 2 +2 I 1 I 2 . I min = I 1 + I 2 2 I 1 I 2 .
I(k;x,y)= I o (x,y)+A(x,y)cos[k2h(x,y)]. Δφ(x,y)=Δk2h(x,y).
h(x,y)= 1 2 Δφ Δk .

Metrics