Abstract

We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C. The excellent transparency and large refractive index of silicon over the infrared wavelength range result in a visibility of 33 dB for the reflection spectrum. A novel average wavelength tracking method has been proposed and demonstrated for sensor demodulation with improved signal-to-noise ratio, which leads to a temperature resolution of 6 × 10−4 °C. Due to the high thermal diffusivity of silicon, a response time as short as 0.51 ms for a sensor with an 80-µm-diameter and 200-µm-long silicon pillar has been experimentally achieved, suggesting a maximum frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  2. D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
    [Crossref]
  3. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  4. S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
    [Crossref]
  5. A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
    [Crossref]
  6. Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
    [Crossref]
  7. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 degrees C,” Opt. Express 17(24), 21551–21559 (2009).
    [Crossref] [PubMed]
  8. P. F. Wang, M. Ding, L. Bo, C. Y. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  9. M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
    [Crossref]
  10. I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E Sci. Instrum. 21(7), 652–656 (1988).
    [Crossref]
  11. L. Schultheis, H. Amstutz, and M. Kaufmann, “Fiber-optic temperature sensing with ultrathin silicon étalons,” Opt. Lett. 13(9), 782–784 (1988).
    [Crossref] [PubMed]
  12. J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
    [Crossref]
  13. G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
    [Crossref]
  14. W. Hou, S. Woods, E. Jarosz, W. Goode, and A. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51(14), 2678–2686 (2012).
    [Crossref] [PubMed]
  15. W. Hou, Ocean Sensing and Monitoring (SPIE Press, 2013).
  16. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  17. F. W. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. S. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
    [Crossref] [PubMed]
  18. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  19. M. N. Özişik, Heat Transfer: A Basic Approach (McGraw-Hill, 1985).
  20. W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
    [Crossref]

2014 (1)

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

2013 (1)

2012 (4)

F. W. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. S. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
[Crossref] [PubMed]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51(14), 2678–2686 (2012).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

2009 (2)

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 degrees C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

2008 (2)

2004 (1)

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

2002 (1)

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

2000 (1)

W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
[Crossref]

1997 (2)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

1991 (1)

J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
[Crossref]

1988 (2)

L. Schultheis, H. Amstutz, and M. Kaufmann, “Fiber-optic temperature sensing with ultrathin silicon étalons,” Opt. Lett. 13(9), 782–784 (1988).
[Crossref] [PubMed]

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E Sci. Instrum. 21(7), 652–656 (1988).
[Crossref]

Amstutz, H.

Bandyopadhyay, S.

Berthold, J. W.

J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
[Crossref]

Bo, L.

Brambilla, G.

P. F. Wang, M. Ding, L. Bo, C. Y. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Canning, J.

Cocorullo, G.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

Cook, K.

Corte, F. G. D.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

Coviello, G.

Dai, X.

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

Ding, M.

P. F. Wang, M. Ding, L. Bo, C. Y. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Fan, X. D.

Farrell, G.

P. F. Wang, M. Ding, L. Bo, C. Y. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

Finazzi, V.

Fink, T.

Friberg, A. T.

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E Sci. Instrum. 21(7), 652–656 (1988).
[Crossref]

Goode, W.

Guan, C. Y.

Guo, F. W.

Han, M.

Hatta, A. M.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hou, W.

Huang, J. S.

Iodice, M.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

James, S. W.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Jarosz, E.

Kajanto, I.

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E Sci. Instrum. 21(7), 652–656 (1988).
[Crossref]

Kaufmann, M.

Khaliq, S.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Koester, L.

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Li, D.

W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
[Crossref]

Mala, G. M.

W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
[Crossref]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Pickrell, G. R.

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Pruneri, V.

Qi, B.

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Qu, W.

W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
[Crossref]

Rajan, G.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Reed, S. E.

J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

Safaai-Jazi, A.

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Sarkis, R. G.

J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
[Crossref]

Sarro, P. M.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

Schultheis, L.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Semenova, Y.

P. F. Wang, M. Ding, L. Bo, C. Y. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

Stevenson, M.

Tatam, R. P.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Turner, J.

Villatoro, J.

Wang, A.

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Wang, J.

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

Wang, P.

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Wang, P. F.

Wang, Y.

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

Weidemann, A.

White, I. M.

Woods, S.

Wu, Q.

Zhang, D.

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

Zhang, Y. B.

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Electron. Lett. (1)

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “SMS fibre structure for temperature measurement using a simple intensity-based interrogation system,” Electron. Lett. 45(21), 1069–1070 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

IEEE T. Electron Dev. (1)

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE T. Electron Dev. 44(5), 766–774 (1997).
[Crossref]

Int. J. Heat Mass Transfer (1)

W. Qu, G. M. Mala, and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer 43(21), 3925–3936 (2000).
[Crossref]

J. Phys. E Sci. Instrum. (1)

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E Sci. Instrum. 21(7), 652–656 (1988).
[Crossref]

Meas. Sci. Technol. (3)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

D. Zhang, J. Wang, Y. Wang, and X. Dai, “A fast response temperature sensor based on fiber Bragg grating,” Meas. Sci. Technol. 25(7), 075105 (2014).
[Crossref]

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Opt. Eng. (2)

J. W. Berthold, S. E. Reed, and R. G. Sarkis, “Reflective fiber optic temperature sensor using silicon thin film,” Opt. Eng. 30(5), 524–528 (1991).
[Crossref]

Y. B. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high-temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (2)

M. N. Özişik, Heat Transfer: A Basic Approach (McGraw-Hill, 1985).

W. Hou, Ocean Sensing and Monitoring (SPIE Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of (a) the system and (b) the sensor head in detail.

Fig. 2
Fig. 2

Sensor fabrication steps. (a) Manufacturing of upstanding silicon pillars through MEMS technology. (b) Attaching a thin film of UV curable glue on the fiber endface. (c) Adjusting and pressing the fiber endface against a silicon pillar and applying UV light to cure the glue. (d) Lifting up the cured sensor head. (e) Removing the residual photoresist by rinsing it with alcohol. (f) Optical microscope of a fabricated sensor head with an 80-µm-diameter and 200-µm-long silicon pillar.

Fig. 3
Fig. 3

(a) Reflection spectrum of the sensor. (b) Relative wavelength shift versus temperature.

Fig. 4
Fig. 4

(a) A frame of the reflection spectrum measured by the high-speed spectrometer. (b) Wavelength noise of each peak shown in (a), the red line represents the noise level of the average fringe peak wavelength. (c) Fitted peak wavelength for peaks 17 and 18 and the average wavelength versus time. (d) Three frames of data for peaks 17 and 18 that are used for peak wavelength fitting. Inset is a close-up view of data fitting for peak 18. (e) Relative wavelength evolution during natural cooling of hot water for five peaks and the average wavelength. Note that the positions of peaks are moved vertically for clear comparison of noise in (e).

Fig. 5
Fig. 5

(a) Wavelength noise with respect to integration time of the spectrometer. (c) Noise of individual peaks when the sensor is placed in water (red) or air (black). The blue line indicates the noise level of the average wavelength. (c) Variations in the average wavelength with time for the sensor placed in water (red) or air (black). Note that the wavelengths are vertically shifted for better view.

Fig. 6
Fig. 6

(a) Lumped parameter model for heat transfer analysis of the sensor. (b) Simulated normalized temperature versus time for silicon pillars with different parameters. D and L denote diameter and length of the silicon pillar, respectively.

Fig. 7
Fig. 7

(a) The response time is measured by fast insertion into hot water. (b) Experimental relative wavelength versus time.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( N+ 1 2 ) λ N =2nL,
λ N T = λ N ( 1 n n T + 1 L L T ).
T t =α 2 T,
B i = h L c K s ,
h= N u K w L c ,
h A s ( T T)dt= ρ s C s V s dT,
T(t)= T +( T 0 T )exp( h A s ρ s C s V s t ).
T N (t)= T(t) T 0 T T 0 =1exp( h A s ρ s C s V s t ).
τ= ρ s C s V s h A s .

Metrics