Abstract

The broadband electroluminescence of a quantum cascade device based on a multi-color active region covering the wavelengths 5.9μm – 7.2μm was measured. Anti-reflection coatings were applied on both cleaved facets to remove the Fabry-Pérot cavity and prevent the device from lasing. This allows the latter to be studied either as a superluminescent diode or a single-pass amplifier in order to determine its suitability as a source for low speckle imaging applications. At 243 K, the amplified spontaneous emission has a peak power of 38μW that agrees well with a simple model of spontaneous emission intensity. The light of a similar structure could be modulated up to 1 GHz, limited by the RC constant of the device. The peak gain was measured from high-resolution luminescence spectra and determined to be 6.3 cm−1, corresponding to a single-pass gain of 1.89.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power spiral cavity quantum cascade superluminescent emitter

Mei C. Zheng, Nyan L. Aung, Abanti Basak, Peter Q. Liu, Xiaojun Wang, Jen-Yu Fan, Mariano Troccoli, and Claire F. Gmachl
Opt. Express 23(3) 2713-2719 (2015)

Long-wavelength infrared (~10-15 μm) electroluminescence from Sb-based interband cascade devices

D. Zhang, E. Dupont, R. Q. Yang, H. C. Liu, C.-H. Lin, M. Buchanan, and S. S. Pei
Opt. Express 1(4) 97-101 (1997)

Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10μm) range

Tatsuo Dougakiuchi, Kazuue Fujita, Atsushi Sugiyama, Akio Ito, Naota Akikusa, and Tadataka Edamura
Opt. Express 22(17) 19930-19935 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
    [Crossref]
  2. A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
    [Crossref]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  4. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
    [Crossref]
  5. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref] [PubMed]
  6. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
    [Crossref]
  7. D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.
  8. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
    [Crossref]
  9. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [Crossref]
  10. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
    [Crossref] [PubMed]
  11. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade lasers,” Opt. Lett. 28(1), 16–18 (2001).
    [Crossref]
  12. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
    [Crossref]
  13. E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
    [Crossref]
  14. N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
    [Crossref]
  15. S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
    [Crossref]
  16. B. Hakki and T. Paoli, “Cw Degradation at 300 Degrees K of Gaas double-heterostructure junction lasers .2. Electronic Gain,” J. Appl. Phys. 44, 4113–4119 (1973).
    [Crossref]
  17. J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013).
    [Crossref]
  18. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12, 033–045 (2010).
    [Crossref]
  19. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
    [Crossref]
  20. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
    [Crossref]

2014 (2)

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

2012 (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

2011 (1)

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

2010 (3)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12, 033–045 (2010).
[Crossref]

2009 (1)

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

2008 (1)

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

2007 (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

2006 (1)

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

2001 (2)

E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade lasers,” Opt. Lett. 28(1), 16–18 (2001).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1993 (1)

1976 (1)

1973 (1)

B. Hakki and T. Paoli, “Cw Degradation at 300 Degrees K of Gaas double-heterostructure junction lasers .2. Electronic Gain,” J. Appl. Phys. 44, 4113–4119 (1973).
[Crossref]

Ahn, S.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Aidam, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Andrews, A. M.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Aung, N.L.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Baillargeon, J.N.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Bauer, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Bonetti, Y.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

Bronner, W.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Capasso, F.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Childs, D.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cho, A.Y.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Ciaffoni, L.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Cockburn, J.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Degreif, K.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Detz, H.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Dingel, B.

Duxbury, G.

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12, 033–045 (2010).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013).
[Crossref]

Fan, J.-Y.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Forchel, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Fuchs, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Gini, E.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

Gmachl, C.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Gmachl, C.F.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Goodman, J. W.

Grilli, R.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Groom, K.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Groom, K. M.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Hakki, B.

B. Hakki and T. Paoli, “Cw Degradation at 300 Degrees K of Gaas double-heterostructure junction lasers .2. Electronic Gain,” J. Appl. Phys. 44, 4113–4119 (1973).
[Crossref]

Hancock, G.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Höfling, S.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Hogg, R.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Hopkinson, M.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Hugger, S.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Hwang, H.Y.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Kamp, M.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Kawata, S.

Kennedy, K.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Kinzer, M.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Langford, N.

Lehnhardt, T.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Liu, P.Q.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Lösch, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

MacFarland, D. C.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Martini, R.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Matcher, S.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

McCulloch, M.

Ng, W. H.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Normand, E.

Orr-Ewing, A. J.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Paiella, R.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Paoli, T.

B. Hakki and T. Paoli, “Cw Degradation at 300 Degrees K of Gaas double-heterostructure junction lasers .2. Electronic Gain,” J. Appl. Phys. 44, 4113–4119 (1973).
[Crossref]

Peverall, R.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Rehmann, I.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Revin, D.

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

Revin, D. G.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Ritchie, G. a. D.

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Rößner, K.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

Schnürer, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Schrenk, W.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Schwarzer, C.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D.L.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Strasser, G.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Terazzi, R.

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12, 033–045 (2010).
[Crossref]

Troccoli, M.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Wang, X.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Wilson, L. R.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Wittmann, A.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

Worschech, L.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Yang, Q.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Yu, Y.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Yu, Z.

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

Zederbauer, T.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

Zibik, E. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

Appl. Phys. B (1)

L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. a. D. Ritchie, “3.5μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517–525 (2009).
[Crossref]

Appl. Phys. Lett. (5)

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6μm< λ <8μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88, 121109 (2006).
[Crossref]

N.L. Aung, Z. Yu, Y. Yu, P.Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C.F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105, 2211111 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 051101 (2014).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93, 141103 (2008).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, J.N. Baillargeon, and A.Y. Cho, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

J. Appl. Phys. (1)

B. Hakki and T. Paoli, “Cw Degradation at 300 Degrees K of Gaas double-heterostructure junction lasers .2. Electronic Gain,” J. Appl. Phys. 44, 4113–4119 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12, 033–045 (2010).
[Crossref]

Opt. Eng. (1)

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49, 111127 (2010).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78, 123108 (2007).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26, 014032 (2011).
[Crossref]

Other (2)

D. Childs, K. Kennedy, D. Revin, J. Cockburn, K. Groom, R. Hogg, I. Rehmann, and S. Matcher, “A Rapid swept-source mid-infrared laser,” presented at the UK Semiconductors 2014 & UK Nitrides Consortium Summer Meeting, Sheffield Hallam University, United Kingdom, 9–10 July, 2014.

J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Electroluminescence of the double side AR coated QC device at 243 K, at 1% duty cycle and 16 cm−1 resolution, measured at different currents. A flat spectral shape and FWHM of 230 cm−1 to 390 cm−1 is observed for decreasing current.

Fig. 2
Fig. 2

Rapid scan measurements with a resolution of 0.075 cm−1. 11 ns pulses with a repetition rate of 10 MHz were applied to prevent the heating of the device during the pulse. The strong absorption features are water absorption lines from ambient air. The inset shows a detail of 5 cm−1 close to the center frequency, measured at 600 mA.

Fig. 3
Fig. 3

Transmission measurement on the reference wafer of the AR coatings. Reflectivities from 1400 cm−1 to 1600 cm−1 don’t exceed 3.5% including measurement uncertainty. The error bars give the average uncertainty of the measurements.

Fig. 4
Fig. 4

Peak gain of 6.3 cm−1 extracted at 6.67μm (1480 cm−1) corresponding to a single pass gain of 1.89.

Fig. 5
Fig. 5

LIV characteristics at different duty cycles (10%, 15%, 20%, 25% and 30%) measured at 243 K. Maximum output power of 38μW at 10% duty cycle. Measurement corresponds well with a simple model for amplified spontaneous emission (dashed line).

Fig. 6
Fig. 6

Modulation frequency versus signal with a cutoff frequency at 250 MHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I spont = η coll η mode h ν I N p e τ up τ rad e l ( g α w ) 1 l ( g α w )

Metrics