Abstract

Structured illumination microscopy has been widely used to reconstruct optically sectioned fluorescence images in wide-field fashion; however, it still requires axial scanning to obtain multiple depth information of a volumetric sample. In this paper, a new imaging scheme, called speckle-based volume holographic microscopy system, is presented. The proposed system incorporates volumetric speckle illumination and multiplexed volume holographic gratings to acquire multi-plane images with optical sectioning capability, without any axial scanning. We present the design, implementation, and experimental image data demonstrating the proposed system’s ability to simultaneously obtain wide-field, optically sectioned, and multi-depth resolved images of fluorescently labeled microspheres and tissue structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo volumetric fluorescence sectioning microscopy with mechanical-scan-free hybrid illumination imaging

Chen-Yen Lin, Wei-Hsin Lin, Ju-Hsuan Chien, Jui-Chang Tsai, and Yuan Luo
Biomed. Opt. Express 7(10) 3968-3978 (2016)

Talbot multi-focal holographic fluorescence endoscopy for optically sectioned imaging

Chen Yen Lin, Wei-Tang Lin, Hsi-Hsun Chen, Jau-Min Wong, Vijay Raj Singh, and Yuan Luo
Opt. Lett. 41(2) 344-347 (2016)

Optically sectioned imaging by oblique plane microscopy

C. Dunsby
Opt. Express 16(25) 20306-20316 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
    [Crossref] [PubMed]
  2. J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
    [Crossref] [PubMed]
  3. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
    [Crossref] [PubMed]
  4. C. J. R. Sheppard and A. Choudhury, “Imaging in the scanning microscope,” Opt. Acta (Lond.) 24(10), 1051–1073 (1977).
    [Crossref]
  5. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
    [Crossref] [PubMed]
  6. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
    [Crossref] [PubMed]
  7. N. Chen and Q. Zhu, “Fast scanning confocal microscopy with a rotary mirror array,” in Biomedical Optics 2003 (International Society for Optics and Photonics, 2003), pp. 33–40.
  8. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
    [Crossref] [PubMed]
  9. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  10. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
    [Crossref] [PubMed]
  11. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
    [Crossref] [PubMed]
  12. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
    [Crossref] [PubMed]
  13. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).
  14. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22(19), 1506–1508 (1997).
    [Crossref] [PubMed]
  15. D. Bhattacharya, V. R. Singh, C. Zhi, P. T. C. So, P. Matsudaira, and G. Barbastathis, “Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging,” Opt. Express 20(25), 27337–27347 (2012).
    [Crossref] [PubMed]
  16. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  17. Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
    [Crossref] [PubMed]
  18. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  19. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008).
    [Crossref] [PubMed]
  20. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett. 33(18), 2098–2100 (2008).
    [Crossref] [PubMed]
  21. Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).
  22. S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane wave reference volume holograms,” Appl. Opt. 48(31), 5984–5996 (2009).
    [Crossref] [PubMed]
  23. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  24. J. Mazzaferri, D. Kunik, J. M. Belisle, K. Singh, S. Lefrançois, and S. Costantino, “Analyzing speckle contrast for HiLo microscopy optimization,” Opt. Express 19(15), 14508–14517 (2011).
    [Crossref] [PubMed]
  25. V. R. Singh, H. Choi, E. Y. S. Yew, D. Bhattacharya, L. Yuan, C. J. R. Sheppard, J. C. Rajapakse, G. Barbastathis, and P. T. C. So, “Improving signal-to-noise ratio of structured light microscopy based on photon reassignment,” Biomed. Opt. Express 3(1), 206–214 (2012).
    [Crossref] [PubMed]

2014 (1)

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

2012 (3)

2011 (4)

J. Mazzaferri, D. Kunik, J. M. Belisle, K. Singh, S. Lefrançois, and S. Costantino, “Analyzing speckle contrast for HiLo microscopy optimization,” Opt. Express 19(15), 14508–14517 (2011).
[Crossref] [PubMed]

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

2010 (1)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

2006 (1)

2005 (3)

C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
[Crossref] [PubMed]

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

2000 (1)

1997 (1)

1977 (1)

C. J. R. Sheppard and A. Choudhury, “Imaging in the scanning microscope,” Opt. Acta (Lond.) 24(10), 1051–1073 (1977).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Barbastathis, G.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

V. R. Singh, H. Choi, E. Y. S. Yew, D. Bhattacharya, L. Yuan, C. J. R. Sheppard, J. C. Rajapakse, G. Barbastathis, and P. T. C. So, “Improving signal-to-noise ratio of structured light microscopy based on photon reassignment,” Biomed. Opt. Express 3(1), 206–214 (2012).
[Crossref] [PubMed]

D. Bhattacharya, V. R. Singh, C. Zhi, P. T. C. So, P. Matsudaira, and G. Barbastathis, “Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging,” Opt. Express 20(25), 27337–27347 (2012).
[Crossref] [PubMed]

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane wave reference volume holograms,” Appl. Opt. 48(31), 5984–5996 (2009).
[Crossref] [PubMed]

Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008).
[Crossref] [PubMed]

Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett. 33(18), 2098–2100 (2008).
[Crossref] [PubMed]

Barton, J. K.

Belisle, J. M.

Bhattacharya, D.

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Chen, H.-H.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Choi, H.

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Imaging in the scanning microscope,” Opt. Acta (Lond.) 24(10), 1051–1073 (1977).
[Crossref]

Chu, K. K.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Conchello, J.-A.

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Costantino, S.

Ford, T. N.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

Gelsinger, P. J.

Gelsinger-Austin, P. J.

Gmitro, A. F.

Indebetouw, G.

Kamm, R. D.

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

Kunik, D.

Lefrançois, S.

Lichtman, J. W.

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Lim, D.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008).
[Crossref] [PubMed]

Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett. 33(18), 2098–2100 (2008).
[Crossref] [PubMed]

Matsudaira, P.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

D. Bhattacharya, V. R. Singh, C. Zhi, P. T. C. So, P. Matsudaira, and G. Barbastathis, “Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging,” Opt. Express 20(25), 27337–27347 (2012).
[Crossref] [PubMed]

Mazzaferri, J.

Mertz, J.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
[Crossref] [PubMed]

C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
[Crossref] [PubMed]

Oh, S. B.

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane wave reference volume holograms,” Appl. Opt. 48(31), 5984–5996 (2009).
[Crossref] [PubMed]

Poon, T.-C.

Rajapakse, J. C.

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Rouse, A. R.

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Schilling, B. W.

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Sheppard, C. J. R.

Shinoda, K.

Singh, K.

Singh, V. R.

So, P. T. C.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Storrie, B.

Suzuki, Y.

Tsai, J.-C.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Ventalon, C.

Watson, J. M.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wong, J.-M.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Wu, M. H.

Yew, E. Y. S.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

V. R. Singh, H. Choi, E. Y. S. Yew, D. Bhattacharya, L. Yuan, C. J. R. Sheppard, J. C. Rajapakse, G. Barbastathis, and P. T. C. So, “Improving signal-to-noise ratio of structured light microscopy based on photon reassignment,” Biomed. Opt. Express 3(1), 206–214 (2012).
[Crossref] [PubMed]

Yu, S.-L.

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Yuan, L.

Zervantonakis, I. K.

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

Zhi, C.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (3)

Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt. 16, 096015 (2011).

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16, 016014 (2011).

Laser Photon. Rev. (1)

Y. Luo, V. R. Singh, D. Bhattacharya, E. Y. S. Yew, J.-C. Tsai, S.-L. Yu, H.-H. Chen, J.-M. Wong, P. Matsudaira, P. T. C. So, and G. Barbastathis, “Talbot holographic illumination nonscanning (THIN) fluorescence microscopy,” Laser Photon. Rev. 8(5), L71–L75 (2014).
[Crossref] [PubMed]

Nat. Methods (4)

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Opt. Acta (Lond.) (1)

C. J. R. Sheppard and A. Choudhury, “Imaging in the scanning microscope,” Opt. Acta (Lond.) 24(10), 1051–1073 (1977).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Science (1)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Other (2)

N. Chen and Q. Zhu, “Fast scanning confocal microscopy with a rotary mirror array,” in Biomedical Optics 2003 (International Society for Optics and Photonics, 2003), pp. 33–40.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the speckle-based VHM, which enables optically sectioned imaging at arbitrarily assigned multiple depths without axial scanning. (b) The angular multiplexed recording configuration of volume hologram. (c) and (d) are two-depths (named as 1 and 2) uniform images and speckle illuminated images of 25 μm beads, respectively. The separation between two planes is ~50 μm.

Fig. 2
Fig. 2

The Bragg K-sphere diagram related to the diffracted geometry of a MVHGs with two gratings: (a) the geometry of the resultant k-sphere representation and collector lens on side-view from y-axis, and (b) Bragg wavelength degeneracy with a blue recording laser (|ksig,1| = |kref,1| = 2πn/λ, λ = 488nm) and probing with green wavelength. (|kfluo,i,1| = |k fluo,d,1| = 2πnfluo, λfluo = 530nm).

Fig. 3
Fig. 3

The axial contrast plot of the projected speckle image under bright field illumination condition representing the z point spread function using HiLo computational method without wavelet filtering (marked with blue color with FWHM ~35μm), and with wavelet filtering (marked with red color with FWHM ~25μm).

Fig. 4
Fig. 4

(a) Resultant images of 25 µm fluorescence microspheres for two axial planes, separated at ~50µm, using uniform illumination. (b, c) Speckle-based VHM images at the corresponding axial planes, using pair-wise normal HiLo process (b), and (c) HiLo with wavelet filtering process. (d, e) Intensity profiles at the in-focus and out-of-focus microsphere along red line at depth 1 (d), and depth2 (e). The scalar bar indicated 50 µm.

Fig. 5
Fig. 5

(a) Uniform illuminated images, and (b) Speckle-based VHM images of fluorescently labeled mice intestine sample, stained with Alexa-488 labeled Phalloidin, for the two axial depths. (c, d) Zoom-in image of the box-marked region of (a) and (b) at depth 1 and depth 2, respectively. (e) Intensity cross-section along the orange line shown in depth 1 of the uniformly illuminated and speckle-based VHM illuminated images (a). The scalar bar indicates 100µm size.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K m = k i,m k d,m , | k i,m |=| k d,m |= 2πn λ , m=1,2 ;
dθ/dλ=K/4πnsin(αθ),
I Hi ( r , d m )= 1 { H P k c , d m { [ I u ( r , d m ) ] } },
I Lo ( r , d m )= 1 { L P k c , d m { [ C δs × I u ( r , d m ) ] } }.
I specklebased VHM ( r , d m )= I Hi ( r , d m )+ η d m × I Lo ( r , d m ),
C δs ( r , d m )= σ A ( I s ( r , d m ) I u ( r , d m )) I u ( r , d m ) A ,
C δs,W ( r , d m )= σ A { 1 [ W( k )×( I s ( r , d m ) I u ( r , d m )) ] } I u ( r , d m ) A ,

Metrics