Abstract

We provide the first experimental demonstration of optical transmission characteristics of a W1 photonic crystal waveguide in silicon on sapphire at mid infrared wavelength of 3.43 μm. Devices are studied as a function of lattice constant to tune the photonic stop band across the single wavelength of the source laser. The shift in the transmission profile as a function of temperature and refractive index is experimentally demonstrated and compared with simulations. In addition to zero transmission in the stop gap, propagation losses less than 20 dB/cm are observed for group indices greater than 20 below the light line while more than 300 dB/cm propagation losses are observed above the light line, characteristic of the waveguiding behavior of photonic crystal line defect modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared photonic crystal waveguides in silicon

Christian Reimer, Milos Nedeljkovic, David J. M. Stothard, Matthieu O. S. Esnault, Christopher Reardon, Liam O’Faolain, Malcolm Dunn, Goran Z. Mashanovich, and Thomas F. Krauss
Opt. Express 20(28) 29361-29368 (2012)

Low propagation loss silicon-on-sapphire waveguides for the mid-infrared

Fangxin Li, Stuart D. Jackson, Christian Grillet, Eric Magi, Darren Hudson, Steven J. Madden, Yashodhan Moghe, Christopher O’Brien, Andrew Read, Steven G. Duvall, Peter Atanackovic, Benjamin J. Eggleton, and David J. Moss
Opt. Express 19(16) 15212-15220 (2011)

Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics

Jeff Chiles and Sasan Fathpour
Optica 1(5) 350-355 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  2. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [Crossref] [PubMed]
  3. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
    [Crossref] [PubMed]
  4. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38(19), 3799–3802 (2013).
    [Crossref] [PubMed]
  5. W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
    [Crossref]
  6. W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
    [Crossref] [PubMed]
  7. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  8. R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
    [Crossref]
  9. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
    [Crossref]
  10. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
    [Crossref] [PubMed]
  11. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  12. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
    [Crossref]
  13. C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
    [Crossref]
  14. M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
    [Crossref]
  15. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
    [Crossref] [PubMed]
  16. M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
  17. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
    [Crossref] [PubMed]
  18. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
    [Crossref]
  19. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
  20. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si Ring Resonator for Mid-IR Application,” Opt. Lett. 38(7), 1122–1124 (2013).
    [PubMed]
  21. C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20(28), 29361–29368 (2012).
    [Crossref] [PubMed]
  22. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
    [Crossref] [PubMed]
  23. Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
    [Crossref] [PubMed]
  24. Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).
  25. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  26. B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [Crossref]
  27. S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
    [Crossref] [PubMed]
  28. M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 μm,” in SPIE OPTO (International Society for Optics and Photonics, 2013), pp. 899318–899319.
  29. W. J. Marinelli, C. M. Gittins, A. H. Gelb, and B. D. Green, “Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer,” Appl. Opt. 38(12), 2594–2604 (1999).
    [Crossref] [PubMed]
  30. M. Ahmed and M. Yamada, “Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation,” Opt. Rev. 4(3), 402–407 (1997).
    [Crossref]

2014 (3)

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (6)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20(28), 29361–29368 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (4)

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (2)

R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
[Crossref]

B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

1999 (1)

1997 (1)

M. Ahmed and M. Yamada, “Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation,” Opt. Rev. 4(3), 402–407 (1997).
[Crossref]

Ahmed, M.

M. Ahmed and M. Yamada, “Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation,” Opt. Rev. 4(3), 402–407 (1997).
[Crossref]

Asher, W.

Atanackovic, P.

Baehr-Jones, T.

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Borel, P. I.

Buchwald, A. R.

R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Chakravarty, S.

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38(19), 3799–3802 (2013).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
[Crossref]

Chen, R. T.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38(19), 3799–3802 (2013).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
[Crossref]

Chen, X.

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Chen, Y.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

Chiles, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

Chong, H.

Chong, H. M. H.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Dunn, M.

Duvall, S. G.

Eggleton, B. J.

Emelett, S. J.

R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
[Crossref]

Emerson, N. G.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Esnault, M. O. S.

Fathpour, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

Frandsen, L. H.

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Fung, C.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Gao, W.

Gardes, F.

Gelb, A. H.

Gittins, C. M.

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Green, B. D.

Grillet, C.

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

Hosseini, A.

Hu, Y.

Hudson, D.

Ilic, R.

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Jaberansary, E.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Jackson, S. D.

Khan, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

Khokhar, A.

Kjems, J.

Krauss, T. F.

Kristensen, M.

Kwong, D. N.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Lai, W.-C.

Leijssen, R.

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Li, F.

Lin, C.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
[Crossref]

Lin, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Loncar, M.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Ma, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

Madden, S. J.

Madison, T.

B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Magi, E.

Marinelli, W. J.

Masaud, T. M. B.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Mashanovich, G. Z.

Miloševic, M. M.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

Moghe, Y.

Moss, D. J.

Nedeljkovic, M.

O’Brien, C.

O’Faolain, L.

Owens, N.

Penades, J. S.

Penkov, B.

Qiu, C.

Rahimi, S.

Read, A.

Reardon, C.

Reed, G.

Reed, G. T.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Reimer, C.

Shankar, R.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Shu, J.

Skivesen, N.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spott, A.

Stankovic, S.

Stothard, D. J. M.

Subbaraman, H.

Teo, E. J.

Têtu, A.

Thomson, D.

Tsang, H.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

Tsang, H. K.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Wang, X.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
[Crossref]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[Crossref] [PubMed]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Wray, P.

Xia, Y.

Xiong, B.

Xu, K.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

Xu, Q.

Xu, X.

Yamada, M.

M. Ahmed and M. Yamada, “Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation,” Opt. Rev. 4(3), 402–407 (1997).
[Crossref]

Zhang, X.

Zhu, L.

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Zou, Y.

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38(19), 3799–3802 (2013).
[Crossref] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98(2), 023304 (2011).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

IEEE Photon. J. (3)

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).

J. Opt. A (1)

R. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8(10), 840–848 (2006).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (7)

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref] [PubMed]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20(28), 29361–29368 (2012).
[Crossref] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Opt. Rev. (1)

M. Ahmed and M. Yamada, “Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation,” Opt. Rev. 4(3), 402–407 (1997).
[Crossref]

Proc. SPIE (1)

B. J. Frey, D. B. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Other (1)

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 μm,” in SPIE OPTO (International Society for Optics and Photonics, 2013), pp. 899318–899319.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) 3D FDTD simulation of a short W1 PCW in silicon-on-sapphire for operation at 3.43 μm with a = 845 nm. The different parts of the transmission spectrum are indicated. (b) Set of 3D FDTD simulations of short W1 PCWs with different lattice constants a = 830 nm, 840 nm, 845 nm, 850 nm, 860 nm, 870 nm and 890 nm. Simulation for a = 845 nm is indicated by the dotted black plot. The output spectrum of our source ICL is indicated by the dashed black plot (right axis).

Fig. 2
Fig. 2

3D plane wave expansion simulation of the dispersion diagram of a silicon based W1 PCW on sapphire substrate with air top cladding. The red dashed line indicates the PCW dispersion at the interface between silicon strip waveguide and W1.07 PCW. The reduced group index at the interface is indicated by the lesser slope (dashed blue lines) at a representative frequency a/λ = 0.246. Sapphire light line is superimposed.

Fig. 3
Fig. 3

(a) Microscope image of the device showing input and output SWGs and PCW. (b) Top view SEM image of PCW and (c) side view SEM image of the PCW at the PCW-strip waveguide interface. Magnified top view SEM images of (d) input group index taper (e) PCW and (f) output group index taper.

Fig. 4
Fig. 4

Schematic of the experimental setup used to characterize our device

Fig. 5
Fig. 5

(a) Normalized transmitted intensity through an air-clad W1 PCW in SoS with r = 0.25a, as a function of a at λ = 3.43 μm plotted (a) in air (bold circles) and C2Cl4 (open circles) and (b) as a function of temperature at 25 °C (bold circles) and 60 °C (open squares). Inset in (b) magnifies the data for devices between a = 840 nm and a = 855 nm.

Fig. 6
Fig. 6

3D FDTD simulated transmission spectra through a 50 μm long PCW in SoS in air (black) and C2Cl4 (red) for (a) a = 845 nm, (b) a = 830 nm, (c) a = 810 nm and (d) for a change in temperature from 25 °C (black) to 60 °C (red) for a = 845 nm. The transmission of the source laser is shown for comparison.

Fig. 7
Fig. 7

(a) Transmission losses in W1 PCWs in SoS below the light line for a = 846 nm (■), a = 848 nm (▲) and a = 850 nm (◆) at λ = 3.43 μm. The three dash lines are the linear fit for a = 846 nm (black), a = 848 nm (blue), and a = 850 nm (red). Insets plot the propagation losses above the light line for devices with a = 855 nm (■), 860 nm (■), 865 nm (●), 870 nm (●) and 890 nm (□). (b) Solid line plot is the group index profile versus wavelength for W1 PCW in Fig. 2 with a = 845 nm. Estimated propagation group indices versus lattice constant are plotted with filled circles. Experimental propagation losses for measured devices are plotted versus lattice constant with open circles (right axis).

Fig. 8
Fig. 8

3D FDTD simulated transmission spectra through a 50 μm long PCW in SoS at a = 845 nm for radius r = 0.25a (black) and radius r = 0.25a + 5 nm (blue). Short dashed lines indicate the positions of the light line and transmission band edge. The source laser spectrum is shown in black long dashed line.

Tables (1)

Tables Icon

Table 1 Summary of measured lattice constants and its corresponding propagation loss

Metrics