Abstract

Ultra-fast, continuously tunable true-time delays are key components in many microwave and optical communications subsystems. In this paper, we introduce and demonstrate a new implementation method of a continuously tunable true-time delay featuring a settling time in the order of tens of picoseconds. Our solution relies on the splitting and combining of complementary phased shifted spectra (CPSS). It works for large bandwidth signals, has a low complexity, offers moderate losses, and can be fully integrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

Sanghoon Chin, Luc Thévenaz, Juan Sancho, Salvador Sales, José Capmany, Perrine Berger, Jérôme Bourderionnet, and Daniel Dolfi
Opt. Express 18(21) 22599-22613 (2010)

Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay

Iman Aryanfar, David Marpaung, Amol Choudhary, Yang Liu, Khu Vu, Duk-Yong Choi, Pan Ma, Stephen Madden, and Benjamin J. Eggleton
Opt. Lett. 42(7) 1313-1316 (2017)

Optical true time delay unit for multi-beamforming

Xingwei Ye, Fangzheng Zhang, and Shilong Pan
Opt. Express 23(8) 10002-10008 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  3. J. Byung-Min, K. Dong-Hyun, J. In-Pyung, S. Sang-Jin, and K. Hyoung-Joo, “Optical true time-delay beamformer based on microwave photonics for phased array radar,” in Synthetic Aperture Radar (APSAR)(2011), pp. 1–4.
  4. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [Crossref]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. J. Wells, “Faster than fiber: The future of multi-g/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
    [Crossref]
  7. Y. Okawachi, M. A. Foster, X. P. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
    [Crossref] [PubMed]
  8. E. Choi, J. H. Na, S. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: Feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
    [Crossref] [PubMed]
  9. G. N. Pearson, K. D. Ridley, and D. V. Willetts, “Chirp-pulse-compression three-dimensional lidar imager with fiber optics,” Appl. Opt. 44(2), 257–265 (2005).
    [Crossref] [PubMed]
  10. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  11. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part i: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [Crossref]
  12. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part ii: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [Crossref]
  13. L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
    [Crossref] [PubMed]
  14. T. Akiyama, A. Satoh, K. Nishizawa, S. Yamamoto, S. Itakura, and Y. Hirano, “Fourier transform optically controlled phased array antenna in receiving operation,” in MWP 2009(2009), pp. 322–325.
  15. X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
    [Crossref]
  16. T. Akiyama, H. Matsuzawa, E. Haraguchi, H. Sumiyoshi, T. Ando, A. Akaishi, T. Takahashi, Y. Fujino, and R. Suzuki, “Spatial light modulator based optically controlled beamformer for variable multiple-spot beam antenna,” in MWP 2011(2011), pp. 401–404.
  17. X. Yi, L. Li, T. X. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37(4), 608–610 (2012).
    [Crossref] [PubMed]
  18. L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
    [Crossref]
  19. B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
    [Crossref]
  20. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31(35), 7395–7397 (1992).
    [Crossref] [PubMed]
  21. M. Y. Chen, “Hybrid photonic true-time delay modules for quasi-continuous steering of 2-d phased-array antennas,” J. Lightwave Technol. 31(6), 910–917 (2013).
    [Crossref]
  22. H. Lee, H.-b. Jeon, and J.-w. Jung, “Optical true time-delay beam-forming for phased array antenna using a dispersion compensating fiber and a multi-wavelength laser,” in Fly by Wireless Workshop (FBW), 2011 4th Annual Caneus(2011), pp. 1–4.
    [Crossref]
  23. B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
    [Crossref]
  24. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008).
    [Crossref]
  25. N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010).
    [Crossref]
  26. W. Zhang and J. Yao, “Photonic generation of millimeter-wave signals with tunable phase shift,” IEEE Photon. J. 4(3), 889–894 (2012).
    [Crossref]
  27. S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009).
    [Crossref]
  28. C. Caucheteur, A. Mussot, S. Bette, A. Kudlinski, M. Douay, E. Louvergneaux, P. Mégret, M. Taki, and M. Gonz Lez-Herrāez, “All-fiber tunable optical delay line,” Opt. Express 18(3), 3093–3100 (2010).
    [Crossref] [PubMed]
  29. D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
    [Crossref]
  30. J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22(19), 22707–22715 (2014).
    [Crossref] [PubMed]
  31. S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: Basic design,” Opt. Eng. 49(1), 018201 (2010).
    [Crossref]
  32. S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
    [Crossref]
  33. R. J. Mailloux, Phased array antenna handbook (Artech House, 2005).
  34. J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC)(2010), pp. 1–3.
    [Crossref]
  35. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
    [Crossref]
  36. F. Séguin and F. Gonthier, “Tuneable all-fiber® delay-line interferometer for dpsk demodulation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(Optical Society of America, Anaheim, California, 2005), p. OFL5.
  37. M. V. Drummond, P. P. Monteiro, and R. N. Nogueira, “Photonic true-time delay beamforming based on polarization-domain interferometers,” J. Lightwave Technol. 28(17), 2492–2498 (2010).
    [Crossref]
  38. Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
    [Crossref]
  39. H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
    [Crossref]
  40. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  41. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21(22), 1686–1688 (2009).
    [Crossref]

2014 (1)

2013 (2)

2012 (3)

X. Yi, L. Li, T. X. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37(4), 608–610 (2012).
[Crossref] [PubMed]

W. Zhang and J. Yao, “Photonic generation of millimeter-wave signals with tunable phase shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[Crossref]

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

2011 (1)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

2010 (7)

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part i: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part ii: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: Basic design,” Opt. Eng. 49(1), 018201 (2010).
[Crossref]

M. V. Drummond, P. P. Monteiro, and R. N. Nogueira, “Photonic true-time delay beamforming based on polarization-domain interferometers,” J. Lightwave Technol. 28(17), 2492–2498 (2010).
[Crossref]

C. Caucheteur, A. Mussot, S. Bette, A. Kudlinski, M. Douay, E. Louvergneaux, P. Mégret, M. Taki, and M. Gonz Lez-Herrāez, “All-fiber tunable optical delay line,” Opt. Express 18(3), 3093–3100 (2010).
[Crossref] [PubMed]

N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010).
[Crossref]

2009 (5)

S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

J. Wells, “Faster than fiber: The future of multi-g/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2008 (3)

2007 (3)

B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

2006 (2)

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

2005 (2)

2000 (2)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
[Crossref] [PubMed]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

1992 (1)

Alic, N.

Arriaga, J.

Bai, J.

S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
[Crossref]

Bentum, M. J.

Bette, S.

Binh, L. N.

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

Birks, T. A.

Blais, S.

Blanch, S.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Burla, M.

Burrus, C. A.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Caucheteur, C.

Chen, J.

Chen, M. Y.

Chen, X. P.

Choi, E.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

del Cura, J. M.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

Dexter, J. L.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Douay, M.

Dreyer, K.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Drummond, M. V.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Fathpour, S.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: Basic design,” Opt. Eng. 49(1), 018201 (2010).
[Crossref]

Foster, M. A.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Gaeta, A. L.

Gong, Y.

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

Gonz Lez-Herraez, M.

He, B.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Heideman, R.

Heideman, R. G.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hoekman, M.

Huang, T. X.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Hulzinga, A.

Hunter, D. B.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Ibanez-Lopez, C.

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Jofre, L.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Jopson, R. M.

Jorna, P.

Joyner, C. H.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Jung, B.-M.

B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Kim, B.-G.

B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Knight, J. C.

Kudlinski, A.

Kuo, B. P. P.

Lam, H. Q.

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Lee, B. H.

Leinse, A.

Leuthold, J.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Li, L.

Li, Z.

J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22(19), 22707–22715 (2014).
[Crossref] [PubMed]

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Lipson, M.

Liu, C.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Lou, Q.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Louvergneaux, E.

Mangan, B. J.

Marpaung, D. A. I.

Marti, J.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

McKenzie, I.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

McKinstrie, C. J.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Mégret, P.

Meijerink, A.

Meijerink, R.

Mengual, T.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Mikkelsen, B.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Miller, B. I.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Minasian, R. A.

X. Yi, L. Li, T. X. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37(4), 608–610 (2012).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Monteiro, P. P.

Moro, S.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Mudhana, G.

Mussot, A.

Myslivets, E.

Na, J. H.

Namiki, S.

Nogueira, R. N.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Okawachi, Y.

Ortigosa-Blanch, A.

Parker, M. E.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Pearson, G. N.

Pleumeekers, J. L.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Prather, D.

S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
[Crossref]

Qi, Y.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Radic, S.

Raybon, G.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

Ridley, K. D.

Riza, N. A.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: Basic design,” Opt. Eng. 49(1), 018201 (2010).
[Crossref]

Roeloffzen, C.

Roeloffzen, C. G. H.

Russell, P. S. J.

Ryu, S.

Salem, R.

Santamaria, F. D.

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Schneider, G.

S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
[Crossref]

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Shi, S.

S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
[Crossref]

Shin, J.-D.

B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Shum, P.

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

Soref, R.

Stoltidou, C.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

Taddei, C.

Taki, M.

Turner-Foster, A. C.

van Dijk, P.

van Etten, W.

Verpoorte, J.

Vez, E.

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Vidal, B.

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Wadsworth, W. J.

Wang, J.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Wells, J.

J. Wells, “Faster than fiber: The future of multi-g/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[Crossref]

Willetts, D. V.

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xie, H. K.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xie, J.

Xu, C.

Xu, X.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Xue, Y.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Yao, J.

Yi, X.

X. Yi, L. Li, T. X. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37(4), 608–610 (2012).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “Photonic generation of millimeter-wave signals with tunable phase shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[Crossref]

Zhou, J.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Zhou, L.

Zhou, P.

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

Zhuang, L.

Appl. Opt. (2)

Electron. Lett. (1)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 gbit/s all-optical wavelength conversion with integrated soa delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[Crossref]

IEEE Microw. Mag. (1)

J. Wells, “Faster than fiber: The future of multi-g/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[Crossref]

IEEE Photon. J. (1)

W. Zhang and J. Yao, “Photonic generation of millimeter-wave signals with tunable phase shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (6)

B. Vidal, T. Mengual, C. Ibanez-Lopez, J. Marti, I. McKenzie, E. Vez, F. D. Santamaria, and L. Jofre, “Simplified wdm optical beamforming network for large antenna arrays,” IEEE Photon. Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

B.-M. Jung, J.-D. Shin, and B.-G. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Z. Li, J. Zhou, B. He, Y. Xue, P. Zhou, C. Liu, Y. Qi, Q. Lou, and X. Xu, “Impact of phase perturbation on passive phase-locking coherent beam combination,” IEEE Photon. Technol. Lett. 24(8), 655–657 (2012).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antenn. Propag. 56(6), 1594–1604 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

J. Lightwave Technol. (8)

S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009).
[Crossref]

S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008).
[Crossref]

N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010).
[Crossref]

M. Y. Chen, “Hybrid photonic true-time delay modules for quasi-continuous steering of 2-d phased-array antennas,” J. Lightwave Technol. 31(6), 910–917 (2013).
[Crossref]

M. V. Drummond, P. P. Monteiro, and R. N. Nogueira, “Photonic true-time delay beamforming based on polarization-domain interferometers,” J. Lightwave Technol. 28(17), 2492–2498 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part i: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part ii: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Opt. Commun. (1)

H. Q. Lam, P. Shum, L. N. Binh, and Y. Gong, “Electrically ultra-fast tunable optical filter employing hibi fiber and phase modulator,” Opt. Commun. 283(13), 2662–2664 (2010).
[Crossref]

Opt. Eng. (1)

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: Basic design,” Opt. Eng. 49(1), 018201 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. K. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Other (8)

J. Byung-Min, K. Dong-Hyun, J. In-Pyung, S. Sang-Jin, and K. Hyoung-Joo, “Optical true time-delay beamformer based on microwave photonics for phased array radar,” in Synthetic Aperture Radar (APSAR)(2011), pp. 1–4.

T. Akiyama, H. Matsuzawa, E. Haraguchi, H. Sumiyoshi, T. Ando, A. Akaishi, T. Takahashi, Y. Fujino, and R. Suzuki, “Spatial light modulator based optically controlled beamformer for variable multiple-spot beam antenna,” in MWP 2011(2011), pp. 401–404.

T. Akiyama, A. Satoh, K. Nishizawa, S. Yamamoto, S. Itakura, and Y. Hirano, “Fourier transform optically controlled phased array antenna in receiving operation,” in MWP 2009(2009), pp. 322–325.

H. Lee, H.-b. Jeon, and J.-w. Jung, “Optical true time-delay beam-forming for phased array antenna using a dispersion compensating fiber and a multi-wavelength laser,” in Fly by Wireless Workshop (FBW), 2011 4th Annual Caneus(2011), pp. 1–4.
[Crossref]

S. Shi, J. Bai, G. Schneider, and D. Prather, “Optical phase feed network and ultra-wideband phased array,” in Photonics Conference, IEEE(2012), pp. 372–373.
[Crossref]

R. J. Mailloux, Phased array antenna handbook (Artech House, 2005).

J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC)(2010), pp. 1–3.
[Crossref]

F. Séguin and F. Gonthier, “Tuneable all-fiber® delay-line interferometer for dpsk demodulation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(Optical Society of America, Anaheim, California, 2005), p. OFL5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

– Effect of an ideal TTD onto a signal. The input signal, depicted in the time domain, in the frequency domain (with its magnitude and phase spectrum), and with a phasor representation, is delayed by a TTD and generates an output signal (also shown by its time, frequency and phasor representation on the right hand side). The distinct features of the TTD are the flat magnitude response and the perfect linear phase response according to Eq. (6) and (7). Both of which are shown at the bottom. Assuming a signal bandwidth of Δf=10 GHz , the delay applied in this example corresponds to Δt=Δφ/(2πΔf)=π/(4π10 e 9 )s=25 ps . A set of simulated frequency responses of a TTD are plotted in the inset (i) for delay varying between 0 ps and −50 ps.

Fig. 2
Fig. 2

– New true-time delay (TTD) scheme by means of a complementary phased shifted spectra (CPSS). In this method an input signal (shown in the time, frequency and phasor representation on the left) is first guided into a first filter stage that creates the two complementary signals shown in subfigures (i) and (ii). While one of the signal is unchanged (i), the second one (ii) is phase shifted by a phase modulator. By combining (i) and (ii) in the coupler using complex addition, each frequency components interferes. This results in a new output signal shown in the time, frequency and phasor representation on the right hand side. By comparing this output signal with the output signal of an ideal TTD, Fig. 1, one can see that the CPSS based delay module provides a good approximation of a true-time delay. The frequency dependent phase shifts obtained with this method is indeed almost linear in frequency. The inset (iii) shows the magnitude and phase responses of this configuration for different CPSS phases.

Fig. 3
Fig. 3

– Implementation of a TTD by a CPSS module based on a delay interferometer (DI). A signal is split into two complementary spectra (i) and (ii) by a DI. The DI is tuned to its 50:50 operation point. A phase-offset is then added to one of the DI outputs by means of a phase modulator. The two signals in the arms are then recombined in a coupler. The inset (iii) shows the magnitude and phase responses of this configuration for different CPSS phases. Using a DI as input filter, the phase response is close to be perfectly linear as needed for a time delay line.

Fig. 4
Fig. 4

– Simulation of a true-time delay of 25 ps induced by changing the phase between ± π/2 in the CPSS filter module. The simulations have been performed for an OOK at 10 Gbit/s with a SNR of 11 dB. The pulse is delayed by one quarter of the symbol duration when detuning the phase from the minimum (-π/2) to the maximum phase shift (π/2). The simulation has been performed with VPI Transmission Maker ©.

Fig. 5
Fig. 5

– Fiber based TTD implemented by a CPSS-DI module relying on polarization diversity for implementing a delay interferometer. In the transmitter, an optical signal is encoded with a 10 Gbits/s OOK. The signal is then launched into a polarization maintaining fiber based delay interferometer i.e. the filter creating the complementary phase-shifted spectra. In the interferometer, the input signal is first split into two polarizations (A). Then, one polarization is delayed with respect to the other by the birefringence of the fiber (B). Finally, the slow and fast signals are recombined (C) to produce the two complementary outputs in different polarizations. The two complementary signals are then fed into a LiNbO3 phase modulator that induces a certain phase offset onto the signal in the active axis only. Finally, the signals are recombined in the third stage and fed into a receiver for characterization.

Fig. 6
Fig. 6

– Experimental results showing a TTD of up to 31.9 ps only detuned by shifting the phase in the CPSS-DI module. (a-c) Eye diagrams of a 10 GBit/s OOK signal with CPSS phases of -π/2, 0, and π/2, respectively.

Fig. 7
Fig. 7

– Demonstration of fast true-time delay tunability by means of a CPSS-DI fiber based delay line. The CPSS phase is switched at a rate of 30 MHz between ± π/4. The resulting delay range is 18.3 ps for this configuration (FSR = 17 GHz).

Fig. 8
Fig. 8

- Comparison of signal quality for various true-time delays for both simulations and experiments. The simulations predict that the signal quality will be maintained throughout the true-time delay tuning range. The experimental results are slightly worse. In our setup we mainly attribute this to the instability of the fiber based DI arrangement.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

a φ ( t )= A ^ 0 ( f ) e jφ e j2πft df,
H φ ( f )= e jφ  .
M(f)=1 and ϕ(f)=φ=const.
a TTD ( t )= a 0 ( tΔt ),
[ a 0 ( tΔt ) ]= A ^ 0 ( f ) e j2πΔtf .
H TTD ( f )= e j2πΔtf ,
M( f )=1  with ϕ( f )=2πΔtf.
ε( f )=arg[ H φ ( f ) ]arg[ H TTD ( f ) ]= φ off +2πΔtf.
ε( f )= φ off +2π φ off 2π f c f= φ off ( 1 f f c ).
ε tot ( f )=| ε( f max )ε( f min ) |=| φ off |( | f max f min | f c )=| φ off | F B ,
H CPSS = T Coupler   T φ   T Filter ,
H 1 ( f )=1 f f c +B/2 B   and H 2 ( f )= f f c +B/2 B ,
H CPSS ( f,φ )=[ 1 2 1 2 ][ 1 0 0 e jφ ] [ 1 f f c +B/2 B f f c +B/2 B ] = 1 2 ( 1 f f c +B/2 B )+ 1 2 e jφ f f c +B/2 B .
H CPSSDI = T Coupler   T φ T Filter = T Coupler   T φ T C T B T A =[ 1 2 1 2 ][ 1 0 0 e jφ ] [ j 2 1 2 1 2 j 2 ] [ 1 0 0 e j2πΔtfjπ/2 ][ 1 2 1 2 ].
H CPSSDI ( f,φ )= 1 2 2 ( j+ e j2πf FSR jπ 2 )+ e jφ 2 2 ( 1j e j2πf FSR jπ 2 ).
FSR= c L PMF Δn ,
φ( f )=2πΔtfΔt= Δφ 2πΔf ,
Δ t max = π 2πB = 1 2B = 1 4 T S .

Metrics