Abstract

Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion

Hairun Guo, Binbin Zhou, Xianglong Zeng, and Morten Bache
Opt. Express 22(10) 12211-12225 (2014)

Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise
Opt. Express 19(23) 22557-22562 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
    [Crossref] [PubMed]
  2. K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
    [Crossref] [PubMed]
  3. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 μ m,” Opt. Lett. 19, 2009–2011 (1994).
    [Crossref] [PubMed]
  4. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μ m,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
    [Crossref]
  5. H. Nienhuys, P. C. M. Planken, R. A. Van Santen, and H. J. Bakker, “Generation of mid-infrared pulses by χ(3) difference frequency generation in CaF2 and BaF2,” Opt. Lett. 26, 1350–1352 (2001).
    [Crossref]
  6. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007).
    [Crossref] [PubMed]
  7. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010).
    [Crossref] [PubMed]
  8. D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [Crossref] [PubMed]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  10. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  11. L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
    [Crossref]
  12. G. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
    [Crossref] [PubMed]
  13. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St, and J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref] [PubMed]
  14. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
    [Crossref] [PubMed]
  15. M. Kolesik, L. Tartara, and J. V. Moloney, “Effective three-wave-mixing picture and first Born approximation for femtosecond supercontinua from microstructured fibers,” Phys. Rev. A 82, 045802 (2010).
    [Crossref]
  16. J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
    [Crossref]
  17. I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15, 305–307 (1990).
    [Crossref] [PubMed]
  18. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
    [Crossref] [PubMed]
  19. M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
    [Crossref] [PubMed]
  20. D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney, A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and P. Di Trapani, “Spatio-temporal reshaping and X Wave dynamics in optical filaments,” Opt. Express 15, 13077–13095 (2007).
    [Crossref] [PubMed]
  21. E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
    [Crossref] [PubMed]
  22. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
    [Crossref] [PubMed]
  23. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultra-fast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
    [Crossref]
  24. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of energetic few-cycle near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
    [Crossref] [PubMed]
  25. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [Crossref] [PubMed]
  26. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
    [Crossref]
  27. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
    [Crossref]
  28. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
    [Crossref]
  29. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
    [Crossref]
  30. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006)
    [Crossref] [PubMed]
  31. B. B. Zhou, H. R. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
    [Crossref]
  32. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverseproton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
    [Crossref] [PubMed]
  33. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
    [Crossref] [PubMed]
  34. H. R. Guo, B. B. Zhou, M. Steinert, F. Setzpfandt, T. Pertsch, H. P. Chung, Y. H. Chen, and M. Bache, “Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching,” Opt. Lett. 40, 629–632 (2015).
    [Crossref] [PubMed]
  35. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref] [PubMed]
  36. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
    [Crossref] [PubMed]
  37. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  38. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
    [Crossref]
  39. M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).
  40. H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
    [Crossref]
  41. M. Bache, H. R. Guo, and B. B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
    [Crossref]
  42. B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

2015 (1)

2014 (1)

B. B. Zhou, H. R. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
[Crossref]

2013 (5)

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St, and J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

M. Bache, H. R. Guo, and B. B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[Crossref]

2012 (2)

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

2011 (3)

2010 (5)

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010).
[Crossref] [PubMed]

G. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
[Crossref] [PubMed]

M. Kolesik, L. Tartara, and J. V. Moloney, “Effective three-wave-mixing picture and first Born approximation for femtosecond supercontinua from microstructured fibers,” Phys. Rev. A 82, 045802 (2010).
[Crossref]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultra-fast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

2008 (3)

2007 (5)

2006 (2)

J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006)
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (2)

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[Crossref] [PubMed]

2004 (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

2003 (2)

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

1996 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1994 (1)

1992 (1)

1990 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Andersen, P. E.

Ashihara, S.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]

Averchi, A.

Bache, M.

H. R. Guo, B. B. Zhou, M. Steinert, F. Setzpfandt, T. Pertsch, H. P. Chung, Y. H. Chen, and M. Bache, “Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching,” Opt. Lett. 40, 629–632 (2015).
[Crossref] [PubMed]

B. B. Zhou, H. R. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
[Crossref]

H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[Crossref]

M. Bache, H. R. Guo, and B. B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[Crossref]

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of energetic few-cycle near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
[Crossref] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultra-fast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref] [PubMed]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
[Crossref]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[Crossref] [PubMed]

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

Bakker, H. J.

Bang, O.

Belgiorno, F.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Bjarklev, A. O.

Broeng, J.

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Cha, M.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Chang, G.

Chen, L. J.

Chen, X.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

Chen, Y. H.

Chong, A.

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Chung, H. P.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Couairon, A.

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Cristiani, I.

L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
[Crossref]

Curley, P. F.

Degiorgio, V.

L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
[Crossref]

DeSalvo, R.

Di Trapani, P.

Dubietis, A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Elsaesser, T.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Faccio, D.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney, A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and P. Di Trapani, “Spatio-temporal reshaping and X Wave dynamics in optical filaments,” Opt. Express 15, 13077–13095 (2007).
[Crossref] [PubMed]

Falk, P.

Farrell, G.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Franco, M. A.

Frosz, M. H.

Fuji, T.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Golub, I.

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Grillon, G.

Guo, H.

H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[Crossref]

B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

Guo, H. R.

Hagan, D.

Hamm, P.

Han, Y.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Hansen, K. P.

Hartl, I.

Hölzer, P.

Hou, L. T.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Jiang, J.

Joly, N. Y.

Kaindl, R. A.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Kärtner, F. X.

Kehr, S. C.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Kitamura, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Kolesik, M.

König, F.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Krolikowski, W.

Kuklewicz, C. E.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Kurimura, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Kuroda, K.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]

Langrock, C.

Lenohardt, U.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Liu, X.

B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Mak, K. F.

Mandan, A.

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

Marco, L. D.

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

McLenahan, J.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Moloney, J. V.

Moses, J.

Mysyrowicz, A.

Nibbering, E. T. J.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

Nienhuys, H.

Nishina, J.

Pelc, J. S.

Pertsch, T.

Petersen, P. B.

Petrov, V.

Phillips, C. R.

Piskarskas, A.

Planken, P. C. M.

Polesana, P.

Prade, B. S.

Ramasesha, K.

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

Reimann, K.

Rohr, S.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Rubino, E.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Russell, J.

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St, and J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Salin, F.

Sang, X. Z.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Schiek, R.

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

Seifert, F.

Semenova, Y.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Setzpfandt, F.

Sheik-Bahae, M.

Shen, X. W.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Shimura, T.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]

Skryabin, D. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

St, P.

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St, and J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Stegeman, G.

Steinert, M.

Suzuki, T.

Taira, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Tamosauskas, G.

Tartara, L.

M. Kolesik, L. Tartara, and J. V. Moloney, “Effective three-wave-mixing picture and first Born approximation for femtosecond supercontinua from microstructured fibers,” Phys. Rev. A 82, 045802 (2010).
[Crossref]

L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
[Crossref]

Thrane, L.

Tokmakoff, A.

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010).
[Crossref] [PubMed]

Townsend, D.

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Travers, J. C.

Van Santen, R. A.

Van Stryland, E. W.

Vanherzeele, H.

Wang, K. R.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Weiner, A. M.

Wise, F. W.

Woerner, M.

Wright, E. M.

Wu, Q.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Wurm, M.

Yan, B. B.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Yu, C. X.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Yu, N. E.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Yuan, J. H.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Zeng, X.

H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[Crossref]

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

Zhou, B.

H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[Crossref]

B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

Zhou, B. B.

H. R. Guo, B. B. Zhou, M. Steinert, F. Setzpfandt, T. Pertsch, H. P. Chung, Y. H. Chen, and M. Bache, “Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching,” Opt. Lett. 40, 629–632 (2015).
[Crossref] [PubMed]

B. B. Zhou, H. R. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
[Crossref]

M. Bache, H. R. Guo, and B. B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[Crossref]

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of energetic few-cycle near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
[Crossref] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultra-fast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

Zhou, G. Y.

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Appl. Phys. B (1)

L. Tartara, I. Cristiani, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Appl. Phys. B 77, 307–311 (2003).
[Crossref]

Appl. Phys. Lett. (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett (1)

J. H. Yuan, X. Z. Sang, Q. Wu, C. X. Yu, K. R. Wang, B. B. Yan, X. W. Shen, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, “Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding,” Laser Phys. Lett.  10, 045405 (2013).
[Crossref]

Nat. Chem. (1)

K. Ramasesha, L. D. Marco, A. Mandan, and A. Tokmakoff, “Water vibrations have strongly mixed intra- and intermolecular character,” Nat. Chem. 5, 935–940 (2013).
[Crossref] [PubMed]

Nature (1)

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (14)

H. R. Guo, B. B. Zhou, M. Steinert, F. Setzpfandt, T. Pertsch, H. P. Chung, Y. H. Chen, and M. Bache, “Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching,” Opt. Lett. 40, 629–632 (2015).
[Crossref] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006)
[Crossref] [PubMed]

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverseproton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[Crossref] [PubMed]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[Crossref] [PubMed]

H. Nienhuys, P. C. M. Planken, R. A. Van Santen, and H. J. Bakker, “Generation of mid-infrared pulses by χ(3) difference frequency generation in CaF2 and BaF2,” Opt. Lett. 26, 1350–1352 (2001).
[Crossref]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[Crossref] [PubMed]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010).
[Crossref] [PubMed]

G. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
[Crossref] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007).
[Crossref] [PubMed]

I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15, 305–307 (1990).
[Crossref] [PubMed]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref] [PubMed]

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 μ m,” Opt. Lett. 19, 2009–2011 (1994).
[Crossref] [PubMed]

E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. A (4)

B. B. Zhou, H. R. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

M. Kolesik, L. Tartara, and J. V. Moloney, “Effective three-wave-mixing picture and first Born approximation for femtosecond supercontinua from microstructured fibers,” Phys. Rev. A 82, 045802 (2010).
[Crossref]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultra-fast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

Phys. Rev. Lett. (2)

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interaction,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

E. Rubino, J. McLenahan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Lenohardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108, 253901 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, P. St, and J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (2)

M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721v1 (2012).

B. Zhou, H. Guo, X. Liu, and M. Bache, “Octave-spanning mid-IR supercontinuum generation with ultrafast cascaded nonlinearities,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized input and output spectra from a 10 mm bulk LN crystal pumped with 50 fs 168 μJ pulses centered at 1.4 μm and having 0.8 TW/cm2 peak intensity. A filament-free octave-spanning supercontinuum is formed, including an energetic, broadband DW in the MIR around 2.87 μm.

Fig. 2
Fig. 2

Filtered MIR spectra (linear scale) using an LPF (cut-on wavelength 2.4 μm). (a) Evolution of the MIR spectrum for λ1 = 1.4 μm and sweeping the pump intensity, but without changing the neutral density filter; the spectra are normalized to the peak intensity of the 0.8 TW/cm2 case. Inset: beam profile of the filtered MIR pulse at 0.8 TW/cm2. (b) Normalized spectra recorded under various NIR pump wavelengths and using the maximum intensity available (see Table 1).

Fig. 3
Fig. 3

Numerical simulation of pulse propagation in 10 mm LN. (a) Pump temporal intensity, (b) Pump power-spectral density (PSD). After 2.6 mm soliton self-compression occurs and two main solitons appear, which radiate MIR dispersive waves. The black curve ”tracks” the soliton path. Input: 50 fs λ1 = 1.4 μm and 0.6 TW/cm2. A total Kerr non-linear refractive index n 2 , Kerr,tot I = 54 · 10 20 m 2 / W and a Raman fraction fR = 0.35 was used. The numerical model used plane-wave coupled envelope equations under the slowly-evolving wave approximation [30, 38]. The weak SH (containing less than 3% of the total energy) is not shown.

Fig. 4
Fig. 4

Variation of the supercontinuum content at λ1 = 1.4 μm while sweeping the input peak intensity. (a) The NIR development at low intensities (where no MIR spectral content was measurable); for comparison the spectrum for the maximum intensity is also shown. (b) The full spectra at high intensities (a 20 dB offset per curve is used for clarity).

Fig. 5
Fig. 5

(a) Typical intensity autocorrelation trace for the filtered MIR pulses generated by a 1.3 μm pump with I1 = 1.0 TW/cm2. The blue curve shows the transform-limited pulse duration of the filtered MIR spectrum. (b) Numerical example of a MIR DW when the near-IR part is removed (using the same LPF as in the experiment); the case from Fig. 3 is shown. The MIR pulse is quite broad and complex, but by simply applying a suitably selected amount of positive GDD the MIR pulse is compressed to sub-40 fs FWHM.

Tables (1)

Tables Icon

Table 1 Properties of the MIR DWs from in Fig. 2(b), including input wavelength λ1, input energy W1 and peak input intensity I1. The DW center wavelength λDW is calculated as a weighted average over the filtered MIR spectrum. The MIR conversion efficiency ηMIR was found by measuring the power of the filtered and unfiltered case. The MIR bandwidth Δν is shown as FWHM and at −20 dB.

Metrics