Abstract

We have demonstrated that a hybrid laser array, combining graded-photonic-heterostructure terahertz semiconductor lasers with a ring resonator, allows the relative phase (either symmetric or anti-symmetric) between the sources to be fixed by design. We have successfully phase-locked up to five separate lasers. Compared with a single device, we achieved a clear narrowing of the output beam profile.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-locking of arrays of weakly coupled semiconductor lasers

Niketh Nair, Erik Bochove, and Yehuda Braiman
Opt. Express 26(16) 20040-20050 (2018)

Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies
Opt. Express 17(12) 9491-9502 (2009)

Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers

Keyvan Sayyah, Oleg Efimov, Pamela Patterson, James Schaffner, Carson White, Jean-Francois Seurin, Guoyang Xu, and Alexander Miglo
Opt. Express 23(15) 19405-19416 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Balanis, “Antenna theory: A review,” Proc. IEEE 80(1), 7–23 (1992).
    [Crossref]
  2. D. Botez and G. Peterson, “Modes of phase-locked diode-laser arrays of closely spaced antiguides,” Electron. Lett. 24(16), 1042 (1988).
    [Crossref]
  3. J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
    [Crossref]
  4. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
    [Crossref]
  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [PubMed]
  6. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
    [Crossref]
  7. Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
    [Crossref]
  8. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
    [Crossref]
  9. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
    [Crossref]
  10. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence Terahertz photonic-wire laser,” Opt. Express 18(6), 6390–6395 (2010).
    [Crossref] [PubMed]
  11. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
    [Crossref] [PubMed]
  12. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
    [Crossref] [PubMed]
  13. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
    [Crossref]
  14. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
    [Crossref] [PubMed]
  15. G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
    [Crossref]
  16. E. Istrate and E. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006).
    [Crossref]
  17. G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37(3), 425–427 (2012).
    [Crossref] [PubMed]
  18. C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
    [Crossref]
  19. D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
    [Crossref]
  20. T.-Y. Kao, Q. Hu, and J. L. Reno, “Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers,” Appl. Phys. Lett. 96(10), 101106 (2010).
    [Crossref]
  21. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
    [Crossref]
  22. D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
    [Crossref]

2014 (1)

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

2013 (1)

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

2012 (4)

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[PubMed]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37(3), 425–427 (2012).
[Crossref] [PubMed]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

2010 (3)

T.-Y. Kao, Q. Hu, and J. L. Reno, “Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers,” Appl. Phys. Lett. 96(10), 101106 (2010).
[Crossref]

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence Terahertz photonic-wire laser,” Opt. Express 18(6), 6390–6395 (2010).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

2008 (1)

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

2007 (1)

2006 (2)

2005 (2)

J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

2004 (1)

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

2002 (1)

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

1995 (1)

D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
[Crossref]

1992 (2)

C. Balanis, “Antenna theory: A review,” Proc. IEEE 80(1), 7–23 (1992).
[Crossref]

C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
[Crossref]

1988 (2)

D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
[Crossref]

D. Botez and G. Peterson, “Modes of phase-locked diode-laser arrays of closely spaced antiguides,” Electron. Lett. 24(16), 1042 (1988).
[Crossref]

Akalin, T.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Alton, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Amanti, M. I.

Andronico, A.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Balanis, C.

C. Balanis, “Antenna theory: A review,” Proc. IEEE 80(1), 7–23 (1992).
[Crossref]

Ban, D.

Barbieri, S.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Beck, M.

Beere, H. E.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Belarouci, A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Belkin, M. A.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[Crossref] [PubMed]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

Botez, D.

D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
[Crossref]

C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
[Crossref]

D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
[Crossref]

D. Botez and G. Peterson, “Modes of phase-locked diode-laser arrays of closely spaced antiguides,” Electron. Lett. 24(16), 1042 (1988).
[Crossref]

Capasso, F.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[Crossref] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Carras, M.

Castellano, F.

Chan, C. W. I.

Chassagneux, Y.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Cho, A. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Colombelli, R.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Coudevylle, J.-R.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Davies, A. G.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[Crossref] [PubMed]

de Naurois, G. M.

Dupont, E.

Faist, J.

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence Terahertz photonic-wire laser,” Opt. Express 18(6), 6390–6395 (2010).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

Fan, J. A.

Fathololoumi, S.

Filloux, P.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Gellie, P.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Giles Davies, A.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

Gmachl, C.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Halioua, Y.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

Hu, Q.

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Isac, N.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

Istrate, E.

E. Istrate and E. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006).
[Crossref]

Jirauschek, C.

Kao, T.-Y.

T.-Y. Kao, Q. Hu, and J. L. Reno, “Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers,” Appl. Phys. Lett. 96(10), 101106 (2010).
[Crossref]

Khanna, S.

Khanna, S. P.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
[Crossref]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Kumar, S.

Lachab, M.

Laframboise, S. R.

Lampin, J.-F.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Lee, A. W.

Leo, G.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Letartre, X.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Li, L.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Linfield, E. H.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[Crossref] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Liu, H. C.

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

Maineult, W.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Maisons, G.

Marcadet, X.

Mátyás, A.

Mawst, L.

C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
[Crossref]

D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
[Crossref]

Meyer, J. R.

J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
[Crossref]

Napartovich, A. P.

D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
[Crossref]

Peterson, G.

D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
[Crossref]

D. Botez and G. Peterson, “Modes of phase-locked diode-laser arrays of closely spaced antiguides,” Electron. Lett. 24(16), 1042 (1988).
[Crossref]

Peytavit, E.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Qin, Q.

Reno, J. L.

Ritchie, D. A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Sargent, E.

E. Istrate and E. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006).
[Crossref]

Scalari, G.

Sergent, A. M.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Sirtori, C.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Sivco, D. L.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Strupiechonski, E.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

Unterrainer, K.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

Vurgaftman, I.

J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
[Crossref]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

Wang, Q. J.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Wasilewski, Z. R.

Williams, B. S.

S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
[Crossref] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Xu, G.

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Zmudzinski, C.

D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
[Crossref]

C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
[Crossref]

Appl. Phys. Lett. (7)

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060 (2002).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[Crossref]

G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E. H. Linfield, and R. Colombelli, “Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range,” Appl. Phys. Lett. 104(9), 091112 (2014).
[Crossref]

T.-Y. Kao, Q. Hu, and J. L. Reno, “Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers,” Appl. Phys. Lett. 96(10), 101106 (2010).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

C. Zmudzinski, D. Botez, and L. Mawst, “Simple description of laterally resonant, distributed feedback like modes of arrays of antiguides,” Appl. Phys. Lett. 60(9), 1049–1051 (1992).
[Crossref]

Electron. Lett. (2)

D. Botez, L. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24(21), 1328 (1988).
[Crossref]

D. Botez and G. Peterson, “Modes of phase-locked diode-laser arrays of closely spaced antiguides,” Electron. Lett. 24(16), 1042 (1988).
[Crossref]

IEEE J. Quantum Electron. (2)

J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling,” IEEE J. Quantum Electron. 41(8), 1065–1074 (2005).
[Crossref]

D. Botez, A. P. Napartovich, and C. Zmudzinski, “Phase-locked arrays of antiguides: analytical theory II,” IEEE J. Quantum Electron. 31(2), 244–253 (1995).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J.-R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme,” IEEE Trans. THz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Nat. Commun. (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics 7(9), 691–701 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

C. Balanis, “Antenna theory: A review,” Proc. IEEE 80(1), 7–23 (1992).
[Crossref]

Rev. Mod. Phys. (1)

E. Istrate and E. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Phase-locking surface-emitting THz-QC lasers with GPH resonators. (a) Schematic diagram of an array containing five GPH lasers. (b) Near-field amplitude profiles in various configurations along the array (vertical) axis. From top to bottom: single GPH; arrays containing two GPH lasers which are in phase and in anti-phase; and, an array with five in-phase GPH lasers. (c) Resulting far-field profiles along the array axis, corresponding to the near-field profiles given in (b). Depending on the relative phase of the laser elements, the emission exhibits a node or a maximum in the vertical direction. The central peak becomes narrower as more laser elements are locked together in-phase.
Fig. 2
Fig. 2 Simulations of phased arrays containing two GPH lasers. (a) Conceptual diagram showing a phase-locked array of two GPH lasers. Two identical GPH lasers are embedded into a ring resonator: the GPH grating determines the emission wavelength, whilst the ring sets the field symmetry and hence the phase relationship between the two lasers. (b) Influence of the relative ring length (ΔL) on the frequency and Q-factors of the two relevant optical modes in the array: the symmetric and anti-symmetric modes, respectively. The lines with solid squares correspond to the symmetric mode, the lines with open squares to the anti-symmetric mode. The black plots correspond to the frequency, the red to the Q-factors. As ΔL varies, the frequencies of the symmetric and anti-symmetric modes alternatively match the GPH frequency, and therefore exhibit a high Q-factor favouring lasing. Typical examples are shown in panels (c) and (d), where the field distributions of two modes are plotted, showing the character of a GPH mode in anti-phase with high Q-factor (c)), and the character of ring mode in-phase with low Q-factor (d).
Fig. 3
Fig. 3 Performance of phase-locked arrays containing two GPH lasers. (a) Microscope image of an array containing two GPH lasers. (b) Plot of current density and output power as a function of bias for arrays where the two GPH lasers are in-phase (black) and anti-phase (red). The corresponding far-field emission profiles are presented in (c) and (d), respectively. The far-field profiles were measured in pulsed mode (1μs pulse width, repetition frequency 50kHz) at a heat-sink temperature of 20 K.
Fig. 4
Fig. 4 Stability of the phased array of two surface-emitting GPH THz lasers. Experimental, 1D far-field acquired for several devices with different ΔL lengths. The scans have been acquired across the θy direction. It is the direction orthogonal to the laser ridges and it allows one to gauge the phased/anti-phased operating mode. Eight devices have been tested, and 6 of them operate in phased or anti-phased mode. These measurements confirm the stability of the phasing mechanism for the phased array of 2 elements.
Fig. 6
Fig. 6 Scaling of phased arrays with the number of elements: divergence angle, spectra and output power. (a) and (b) show the measured (red curve) and calculated (blue curve) far-field beam profiles along the array axis for two and four in-phased laser elements, respectively. (c) Calculated relationship between the number of elements in the array and the divergence angle (FWHM) of the central lobe. (d) Output power as a function of current density for the single GPH laser and arrays where all the elements are in-phased (devices presented in Fig. 5). The maximum output power scales with the number of elements in the array. Most importantly, the slope efficiency per unit device is almost invariant (see Fig. 7). The inset shows the laser emission spectra of the devices at an injection current density of ≈300 A/cm2. The measurements are performed with 200-ns-wide pulses at a repetition rate of 100 kHz.
Fig. 5
Fig. 5 Far-field emission patterns of arrays containing different number of elements. Microscope (upper) and far-field emission patterns (lower) of a single GPH laser and arrays containing from two up to five laser elements. The devices were measured at an injection current density of ≈300 A/cm2 (300-ns-wide pulses at a repetition rate of 400 kHz).
Fig. 7
Fig. 7 LI characteristics normalized by the number of devices in the array. The LI characteristics of Fig. 6(d) are presented here normalized by the number of elements in the array. The slope efficiency per unit device in the arrays are the same within +/− 5%, except for the array of 4 which is under-performing. The exact values are, in mW/kAcm−2: 17.7 (array of two); 17 (array of 3); 13 (array of 4); 16 (array of 5). This suggests that the performance of each emitting unit in the coupled system is maintained independently of the number of GPH in the array.

Metrics