Abstract

We propose and experimentally demonstrate an approach to efficiently tune the dispersion of a designer-plasmonic resonator, or a plasmonic ‘meta-atom’, by incorporating an extra ground plane underneath. We demonstrate that this ground plane is able to enhance resonances, and the enhancing effect can render those higher-order azimuthal modes, being absent in previously reported designer-plasmonic resonators, experimentally observable. After incorporating the ground plane, all resonance modes are red shifted with their Q factors enhanced. By increasing the separation from the planar resonator to the underneath ground plane, all enhanced modes are blue shifted with Q factors decreased slightly, whose trend is opposite to increasing the thickness of a dielectric substrate of a common meta-atom without a ground. These results may find potential applications in tunable designer-plasmonic sensors and plasmonic metamaterial designs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spoof localized surface plasmons in corrugated ring structures excited by microstrip line

Bao Jia Yang, Yong Jin Zhou, and Qian Xun Xiao
Opt. Express 23(16) 21434-21442 (2015)

High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

Yihao Yang, Hongsheng Chen, Sanshui Xiao, N. Asger Mortensen, and Jingjing Zhang
Opt. Express 23(15) 19074-19081 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  2. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  4. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  5. S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
    [Crossref]
  6. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  7. A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microw. Theory Tech. 8(1), 30–61 (1960).
    [Crossref]
  8. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  9. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  10. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  11. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
    [Crossref]
  12. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref] [PubMed]
  13. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
    [Crossref]
  14. Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
    [Crossref]
  15. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).
  16. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  17. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  18. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref] [PubMed]
  19. S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
    [Crossref] [PubMed]
  20. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  21. N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
    [Crossref]
  22. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
    [Crossref] [PubMed]
  23. H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
    [Crossref]
  24. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin Metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref] [PubMed]

2015 (1)

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

2014 (7)

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

2013 (2)

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

2012 (3)

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

2010 (2)

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2006 (2)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (2)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1960 (1)

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microw. Theory Tech. 8(1), 30–61 (1960).
[Crossref]

Agrafiotis, S.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Berry, S. J.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

Beruete, M.

Campbell, T.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

Capasso, F.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Chen, H. T.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L. H.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

Cheng, Q.

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

Cui, T. J.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Davies, A. G.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Falcone, F.

Fan, J. A.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Garcia-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, C.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Harvey, A. F.

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microw. Theory Tech. 8(1), 30–61 (1960).
[Crossref]

Hibbins, A. P.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

Kats, M. A.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Khanna, S. P.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Li, L.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

Li, L. H.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Liao, Z.

Linfield, E. H.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, L.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Liu, S.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

Ma, H. F.

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Maier, S. A.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin Metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Navarro-Cía, M.

Nesterov, M. L.

Ning, P.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Niu, Z.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pan, B. C.

Park, Y. S.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Sambles, J. R.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Shen, X.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Singh, R.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Sorolla, M.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Taylor, A. J.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Wang, Q. J.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Xiang, N.

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

Xu, B.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Xu, H. X.

Yin, X. B.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Yu, N. F.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Zhang, H. C.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Zhao, J.

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

Zhao, Y.

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhou, J. F.

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, and W. X. Jiang, “Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes,” Appl. Phys. Lett. 104(5), 053504 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microw. Theory Tech. 8(1), 30–61 (1960).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Laser Photon. Rev. (3)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9(1), 83–90 (2015).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

Nat. Commun. (1)

S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral meta-molecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structered metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Lett. (3)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized Spoof Plasmons Arise while Texturing Closed Surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Phys. Rev. X. (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X. 4(2), 021003 (2014).

Proc. Natl. Acad. Sci. U.S.A. (1)

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of a unit cell for a planar designer-plasmonic structure with a ground plane underneath. a = 0.628 mm, d = 1.256 mm, r = 9.0 mm, and R = 12 mm. The space between the planar designer-plasmonic structure and the ground plane is filled with dielectric media with permittivity 2.2. (b) Simulated dispersion curves of the planar designer-plasmonic structure with the ground plane when h varies. The dispersion of a structure without the ground plane is also plotted for h = 0.254 mm. (c-d) Eigen mode of the planar designer-plasmonic structure (c) without and (d) with the ground plane. The region enclosed by black dashed lines is the dielectric substrate.
Fig. 2
Fig. 2 (a) Front side of a fabricated ultrathin designer-plasmonic resonator with a ground plane at the back side. (b) Probed transmission spectra at various distances between the resonator and the ground plane for h = 0.254 mm, 0.508 mm, 0.762 mm, and 1.016 mm. (c) and (d) Frequency shift and Q factor change of two typical resonances, P1 and P8, respectively, with h increases.
Fig. 3
Fig. 3 Field distribution of various resonance modes from the first order (dipole mode; P1) to the thirteenth order (P13) at (a) 3.43 GHz, (b) 5.61 GHz, (c) 5.83 GHz, (d) 5.92 GHz, (e) 5.99 GHz, and (f) 6.011 GHz, respectively.
Fig. 4
Fig. 4 (a) Simulated dispersion of planar designer-plasmonic structure without the ground plane when the thickness of the substrate changes. h = 0.254 mm, 0.508mm, 0.762mm, and 1.016mm. (b) Probed transmission spectra of planar designer-plasmonic structure without the ground plane with different thickness of substrate. The geometry of resonator is the same as that in Fig. 2(a) apart from the ground plane.

Metrics